Загадки и диковинки в мире чисел - [21]
Глава VII Фокусы без обмана
Искусство индусского царя
Арифметические фокусы – честные, добросовестные фокусы. Здесь не стремятся обмануть, не стараются усыпить внимание зрителя. Чтобы выполнить арифметический фокус, не нужна ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие-либо другие артистические способности, требующие иногда многолетних упражнений. Весь секрет арифметического фокуса состоит в использовании любопытных свойств чисел, в близком знакомстве с их особенностями. Кто знает разгадку такого фокуса, тому все представляется простым и ясным; а для незнающего арифметики самое прозаическое действие, например умножение, кажется уже чем-то вроде фокуса.
Было время, когда выполнение даже обыкновенных арифметических действий над большими числами, знакомое теперь каждому школьнику, составляло искусство лишь немногих и казалось остальным людям какою-то сверхъестественною способностью.
В древнеиндусской повести «Наль и Дамаянти» [25] мы находим отголосок такого взгляда на арифметические действия. Наль, умевший превосходно править лошадьми, возил однажды своего хозяина, царя Ритуперна, мимо развесистого дерева – Вибитаки.
Вдруг он увидел вдали Вибитаку – ветвисто-густою
Сенью покрытое дерево. «Слушай, сказал он:
«Здесь на земле никто не имеет всезнанья; в искусстве
Править конями ты первый; зато мне далося искусство
Счета»…
И в доказательство своего искусства царь мгновенно сосчитал число листьев на ветвистой Вибитаке. Изумленный Наль просит Ритуперна открыть ему тайну его искусства, и царь соглашается.
…Лишь только
Вымолвил слово свое Ритуперн, как у Наля открылись
Очи, и он все ветки, плоды и листья Вибитаки
Разом мог перечесть…
Секрет искусства состоял, как можно догадаться, в том, что непосредственный счет листьев, требующий много времени и терпения, заменялся счетом листьев одной лишь ветки и умножением этого числа на число веток каждого сука и далее на число сучьев дерева (предполагая, что сучья одинаково обросли ветками, а ветки – листьями). Обыкновенное действие умножения казалось незнакомому с ним человеку чем-то загадочным, сверхъестественным.
Разгадка большинства арифметических фокусов столь же проста, как и секрет «фокуса» царя Ритуперна.
Стоит лишь узнать, в чем разгадка фокуса, и вы сразу овладеваете искусством его выполнять, как овладел легендарный Наль изумительным искусством быстрого счета. В основе каждого арифметического фокуса лежит какая-нибудь интересная особенность чисел, и потому знакомство с подобными фокусами не менее поучительно, чем занимательно.
Не вскрывая конвертов
Фокусник вынимает стопку из 300 денежных знаков, по 1 рублю каждый, и предлагает вам разложить деньги в 9 конвертах так, чтобы вы могли уплатить ими любую сумму до 300 рублей, не вскрывая ни одного конверта.
Задача представляется вам совершенно невыполнимой. Вы готовы уже думать, что фокусник просто желает поймать вас на недогадливости, что тут дело кроется в какой-нибудь коварной игре слов или неожиданном толковании их смысла. Но вот фокусник, видя вашу беспомощность, сам раскладывает деньги по конвертам, заклеивает их и предлагает вам назвать любую сумму в пределах трехсот рублей.
Вы называете наугад первое попавшееся число – 269.
Фокусник без малейшего промедления подает вам 4 заклеенных конверта. Вы вскрываете их и находите:
Теперь вы склонны заподозрить фокусника в искусной подмене конвертов и требуете повторения опыта. Фокусник спокойно кладет деньги обратно в конверты, заклеивает и оставляет их на этот раз уже в ваших руках. Вы называете новое число, например 100, или 7, или 293 – и фокусник моментально указывает, какие из лежащих у вас под руками конвертов вы должны взять, чтобы составить требуемую сумму (в первом случае, для 100 р. – 4 конверта, во втором, для 7 р. – 3 конверта, в третьем, для 293 р. – 6 конвертов). Это представляется чем-то непостижимым; но, прочтя ближайшие полстраницы, вы сможете повторить тот же фокус и изумлять других, еще не посвященных в его секрет. А секрет этот кроется в том, чтобы разложить деньги в следующие стопки: 1 р., 2 р., 4 р., 8 р., 16 р., 32 р., 64 р., 128 р. и, наконец, в последней – остальные рубли, т. е.
300-(1 + 2+ 4 +8 + 16 + 32 + 64+ 128) = 300–255 = 45.
Из первых 8 конвертов возможно, как нетрудно убедиться, составить любую сумму от 1 до 255; если же задается число большее, то пускают в дело последний конверт, с 45 рублями, а разницу составляют из первых восьми конвертов.
Вы можете проверить пригодность такой группировки чисел многочисленными пробами и убедиться, что из них можно действительно составить всякое число, не превышающее 300. Но вас, вероятно, интересует и то, почему собственно ряд чисел 1,2,4, 8,16, 32, 64 и т. д. обладает столь замечательным свойством. Это нетрудно понять, если вспомнить, что числа нашего ряда представляют степени двух: 21, 22, 23, 24 и т. д. [26] , и, следовательно, их можно рассматривать как разряды двоичной системы счисления. Атак как всякое число можно написать по двоичной системе, то, значит, и всякое число возможно составить из суммы степеней двух, т. е. из чисел ряда 1, 2, 4, 8, 16 и т. д. И когда вы подбираете конверты, чтобы составить из их содержимого заданное число, вы, в сущности, выражаете заданное число в двоичной системе счисления. Например, число 100 мы легко сможем составить, если изобразим его в двоичной системе:
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.