Загадки и диковинки в мире чисел - [20]
Мы уже имели дело с такими числами – именно, когда знакомились со свойствами числа 999. Вспомнив сказанное там, мы сразу сообразим, что число 142857 есть, очевидно, результат умножения 143 на 999:
142857 = 143 × 999.
Но 143= 13 × 11. Припомнив замеченное раньше о числе 1001, равном 7 × 11 × 13, мы будем в состоянии предсказать, не выполняя действия, что должно получиться от умножения 142857 × 7:
142857 × 7 = 143 × 999 × 7 = 999 × 11 × 13 × 7 = 999 × 1001 = 999999
(все эти преобразования мы, конечно, можем проделать в уме).
Феноменальная семья
Только что рассмотренное нами число 142857 является одним из членов целой семьи чисел, обладающих теми же свойствами. Вот еще одно такое число 058823594117647
0588235294117647 × 4 = 2352941176470588.
Расположив цифры этого числа на ряде могущих вращаться колец, как в предыдущем случае, – мы при сложении чисел двух колец будем получать то же число, лишь смещенное в круговом порядке:
При кольцевом расположении все три ряда, конечно, тождественны.
От вычитания чисел двух колец опять-таки получается тот же круг цифр:
Наконец, это число, как и рассмотренное ранее шестизначное, состоит из двух половин: цифры второй половины являются дополнением цифр первой половины до 9. Нетрудно догадаться, каким образом приведенный числовой ряд оказался столь близким родственником числа 142857; если последнее число представляет собою период бесконечной дроби, равной 1/7, то наше число, вероятно, является периодом какой-нибудь другой дроби. Так оно и есть: наш длинный ряд цифр – не что иное, как период бесконечной дроби, получающейся от превращения в десятичную простой дроби 1/17:
1/17 = 0, (0588235294117647).
Вот почему при умножении этого числа на множители от 1 до 16 получается тот же ряд цифр, в котором лишь одна или несколько начальных цифр перенесены в конец числа. И наоборот – перенося одну или несколько цифр ряда из начала в конец, мы тем самым увеличиваем это число в несколько раз (от 1 до 16). Складывая два кольца, повернутых одно относительно другого, мы производим сложение двух умноженных чисел, например, утроенного и удесятеренного – и, конечно, должны получить то же кольцо цифр, потому что умножение на 13 вызывает лишь перестановку группы цифр, незаметную при круговом расположении.
При некотором положении колец получаются, однако, суммы, немного отличающиеся от первоначального ряда. Если, например, мы повернем кольца так, чтобы складывать пришлось шестикратное число с пятнадцатикратным, то в сумме должно получиться число, умноженное на 6 + 15 = 21. А такое произведение, как легко догадаться, составляется уже несколько иначе, чем произведение на множитель меньше 16. В самом деле: так как наше число есть период дроби, равной 1/17, то будучи умножено на 17, оно должно дать 16 девяток (т. е. столько, сколько их в подразумеваемом знаменателе периодической дроби), или 1 с 17 нулями минус 1. Поэтому при умножении на 21, т. е. на 4 + 17, мы должны получить четырехкратное число, впереди которого стоит 1, а от разряда единиц отнято 1. Четырехкратное же число начнется с цифр, получающихся при превращении в десятичную дробь простой дроби 4/17.
Порядок остальных цифр нам известен: 5294… Значит, 21-кратное наше число будет
2352941176470588,
столько именно и получается от сложения кругов цифр при соответственном их расположении. При вычитании числовых колец такого случая, разумеется, быть не может.
Чисел, подобных тем двум, с которыми мы познакомились, существует множество. Все они составляют словно одно семейство, так как объединены общим происхождением – от превращения простых дробей в бесконечные десятичные. Но не всякий период десятичной дроби обладает рассмотренным выше любопытным свойством давать при умножении круговую перестановку цифр. Это имеет место только для тех дробей, число цифр периода которых на единицу меньше знаменателя соответствующей простой дроби. Так, например:
Вы можете убедиться испытанием, что периоды дробей, получающихся от превращения 1/19 и 1/23 в десятичные, обладают теми же особенностями, как и рассмотренные нами периоды дробей 1/7 и 1/17. Если указанное сейчас условие (относительно числа цифр периода) не соблюдено, то соответствующий период дает число, не принадлежащее к занимающей нас семье интересных чисел. Например, 1/13 дает десятичную дробь с шестью (а не с 12) цифрами в периоде:
1/13 = 0,076923.
Помножив на 2, получаем совершенно иное число:
2/13 = 0,153846.
Почему? Потому что среди остатков от деления 1: 13 не было числа 2. Различных остатков было столько, сколько цифр в периоде, т. е. 6; различных же множителей для дроби 1/13 у нас 12, – следовательно, не все множители будут среди остатков, а только 6. Легко убедиться, что эти множители следующие: 1, 3, 4, 9,10, 12. Умножение на эти 6 чисел дает круговую перестановку (076923 × 3 = 230769), на остальные – нет. Вот почему от у получается число, лишь отчасти пригодное для «магического кольца». То же надо сказать и о целом ряде других периодов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.