Загадки и диковинки в мире чисел - [24]
Получается в точности предсказанная сумма, хотя отгадчик не мог знать, каково будет второе слагаемое. Отгадчик может предсказать также сумму 5 или 7 слагаемых, – но тогда он сам пишет два или три из них. Никакой подмены бумажки с результатом здесь заподозрить вы не можете, так как она до последнего момента хранится в вашем собственном кармане. Очевидно, отгадчик пользуется здесь каким-то неизвестным вам свойством чисел.
Так оно и есть. Отгадчик пользуется тем, что от прибавления, скажем, к 5-значному числу числа из пяти девяток (99999) первое число увеличивается на 1000000 – 1, т. е. впереди него появляется единица, а последняя цифра уменьшается на единицу. Например:
Это число – т. е. сумму написанного вами числа и 99999 – отгадчик и пишет на бумажке как будущий результат сложения. А чтобы результат оправдался, он, увидев ваше второе слагаемое, выбирает свое, третье слагаемое так, чтобы вместе со вторым оно составило 99999, т. е. вычитает каждую цифру второго слагаемого из 9. Эти операции вы легко можете теперь проследить на предыдущем примере, – а также и на следующих примерах
Легко усмотреть, что вы сильно затрудните отгадчика, если ваше второе слагаемое будет заключать больше цифр, чем первое: отгадчик не сможет написать слагаемого, которое уменьшит ваше второе число для оправдания предсказанного им слишком малого результата. Поэтому опытный отгадчик предупредительно ограничивает свободу вашего выбора этим условием.
Фокус выходит внушительнее, когда в придумывании слагаемых участвует несколько лиц. После первого же слагаемого – например, 437692, отгадчик уже предсказывает сумму всех пяти чисел, а именно записывает 2437690 (здесь будет добавлено дважды 999999, т. е. 2000000 – 2). Дальнейшее ясно из схемы:
Предугадать результат ряда действий
Большое впечатление производят те арифметические фокусы, в которых отгадчик угадывает результат действий над совершенно неизвестными ему числами. Подобных фокусов существует много, и все они основаны на возможности придумать такой ряд арифметических действий, результат которых не зависит от чисел, над которыми они производятся.
Вот один из фокусов этого рода.
Признак делимости на 9 всем известен: число кратно 9, если сумма его цифр кратна 9. Припомнив, как выводится это правило, мы запасаемся еще и другим интересным положением: если от числа отнять сумму его цифр, то получается остаток, кратный 9 (положение это доказывается попутно при выводе признака делимости на 9). Точно так же мы получим число, кратное 9, если отнимем от данного числа другое, которое составлено из тех же цифр, но размещенных в другом порядке. Например: 457 – (4 + 5 + 7) = 441, т. е. числу, кратному 9; или: 7843–4738 = 3105, числу, кратному 9 [30] .
Уже и сказанным можно непосредственно воспользоваться для выполнения несложного фокуса. Предложите товарищу задумать любое число; затем, переставив его цифры в ином, каком угодно порядке, вычесть меньшее число из большего. В полученном результате ваш товарищ зачеркивает одну цифру – безразлично какую – и читает вслух оставшиеся цифры; а вы сразу же называете скрытую от вас, зачеркнутую сумму. Как вы отгадываете ее? Очень просто: вы знаете, что результат должен быть кратен 9, т. е. сумма его цифр должна без остатка делиться на 9. Быстро сложив в уме прочитанные вам цифры, вы легко можете сообразить, какой цифры не хватает, чтобы сумма была кратна 9. Например: задумано число 57924: после перестановки получено 92457.
Но тот же фокус можно обставить гораздо более эффектно, именно так, чтобы отгадать число, ничего не спрашивая у загадчика. Для этого проще всего предложить задумать трехзначное число с неодинаковыми крайними числами; затем, переставив цифры в обратном порядке, вычесть меньшее число из большего; в полученном результате переставить цифры и сложить оба числа. Окончательный результат всего этого ряда перестановок, вычитания и сложения вы называете изумленному загадчику без малейшего промедления или даже вручаете ему заранее в заклеенном конверте.
Секрет фокуса прост: какое бы число ни было задумано, в результате перечисленных действий всегда получается одно и то же: 1089. Вот несколько примеров:
(Последний пример показывает, как должен поступать загадчик, когда разность получается двузначная.)
Всматриваясь внимательно в ход выкладок, вы, без сомнения, поймете причину такого однообразия результатов. При вычитании неизбежно должна получаться в разряде десятков цифра 9, а по сторонам ее – цифры, сумма которых = 9. При последующем сложении должна поэтому получиться на первом справа месте цифра 9, далее, от 9 + 9, цифра 8 и единица в уме, которая при сложении с девятью сотнями дает 10. Отсюда – 1089.
Если вы станете повторять этот опыт несколько раз кряду, не внося в него никаких изменений, то секрет ваш, разумеется, будет раскрыт: загадчик сообразит, что постоянно получается одно и то же число 1089, хотя, быть может, и не отдаст себе отчета в причине такого постоянства. Вам необходимо поэтому видоизменять фокус. Сделать это нетрудно, так как 1089 = 33 × 33 = 11 × 11 × 3 × 3 = 121 × 9 = 99 × 11. Достаточно поэтому просить загадчика, когда вы доведете его до числа 1089, разделить этот результат на 33, или на 11, или на 121, или на 99, или на 9, – и тогда лишь назвать ему получающееся число. У вас, следовательно, в запасе имеется 5 изменений фокуса, – не говоря уже о том, что вы можете просить загадчика также умножить сумму на любое чисто, мысленно выполняя то же самое действие.В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.