Загадки и диковинки в мире чисел - [26]
Они же твориша (поступили) якоже повеле им, умножаху четвертого человека который взял перстень, и прочая вся, яже велеше им; якоже явлено есть: из всего собрания пришло ему число 702, из него же он вычитал 250, осталось 452, т. е. 4-й человек, 5-й палец, 2-й сустав».
Не надо удивляться, что этот арифметический фокус был известен еще 200 лет назад: задачи совершенно подобного же рода имеются уже в одном из первых сборников математических
развлечений, именно у Баше-де-Мезирьяка в его книге «Занимательные и приятные числовые задачи», вышедшей в 1612 году. Нужно вообще заметить, что большая часть математических игр, головоломок и развлечений, которые в ходу в настоящее время, очень древнего происхождения.АРИФМЕТИЧЕСКИЕ КУРЬЕЗЫ
95 + 1 + 6/7 + 4/28 + 3 = 100
98 + 1 + 3/6 + 27/54 = 100
Подыщите еще и другие способы составления числа 100 с помощью девяти значащих цифр, употребленных по одному разу.
(См. стр. 161.)
Глава VIII Быстрый счет и вечный календарь
Вам, быть может, приходилось слышать или даже присутствовать самим на сеансах «гениальных математиков», вычисляющих в уме с поразительной быстротой, сколько вам недель, дней, минут, секунд, в какой день недели вы родились, какой день будет такого-то числа такого-то года и т. п. Чтобы выполнить большую часть этих вычислений, вовсе не нужно, однако, обладать необычайными математическими способностями. То же самое, после недолгого упражнения, может проделать и каждый из нас. Нужно только знать кое-какие секреты этих фокусов, – разоблачением которых мы сейчас и займемся.
«Сколько мне недель?»
Чтобы научиться по числу лет быстро определять число заключающихся в них недель, нужно только уметь ускоренно множить на 52, т. е. на число недель в году.
Пусть дано перемножить 36 × 52. «Счетчик» сразу же, без заминки, говорит вам результат: 1872. Как он его получил? Довольно просто: 52 состоит из 50 и 2; 36 умножается на 5 через деление пополам; получается 18 – это две первые цифры результата; далее умножение 36 на 2 делается как обыкновенно; получают 72, которые и приписываются к прежним 18: 1872.
Легко понять, почему это так. Умножить на 52 значит умножить на 50 и 2; но, вместо того, чтобы умножить на 50, можно половину умножить на 100 – отсюда понятно деление пополам; умножение же на 100 достигается припиской 72 (36 × 2), отчего каждая цифра увеличивается в 100 раз (передвигается на два разряда влево).
Теперь понятно, почему «гениальный» счетчик так быстро отвечает на вопрос: «Мне столько-то лет; сколько мне недель?» Умножив число лет на 52, ему остается только прибавить еще к произведению седьмую часть числа лет, потому что в году 365 дней, т. е. 52 недели и 1 день: каждые 7 лет из этих избыточных дней накопляется лишняя неделя [31] .
«Сколько мне дней?»
Если спрашивают не о числе недель, а о числе дней, то прибегают к такому приему: половину числа лет множат на 73 и приписывают нуль – результат и будет искомым числом (эта формула станет понятна, если заметить, что 730 = 365 × 2). Если мне 24 года, то число дней получим, умножив 12 × 73 = 876 и приписав нуль – 8760. Само умножение на 73 также производится сокращенным образом, о чем речь впереди (стр. 131).
Поправка в несколько дней, происходящая от високосных лет, обыкновенно в расчет не принимается, хотя ее легко ввести, прибавив к результату четверть числа лет (в нашем примере 24:4 = 6; общий результат, следовательно, 8766).
«Сколько мне секунд?»
На этот вопрос [32] также можно довольно быстро ответить, пользуясь следующим приемом: половину числа лет умножают на 63; затем ту же половину множат на 72, результат ставят рядом с первым и приписывают три нуля. Если, например, число лет 24, то для определения числа секунд поступают так:
63 × 12 = 756; 72 × 12 = 864; результат: 756864000.
Указанными ниже приемами ускоренного умножения эти операции облегчаются до чрезвычайности, и миллионный результат получается очень быстро. Советую читателю попробовать произвести то же вычисление и обыкновенным путем, чтобы на деле убедиться, какая экономия во времени получается при пользовании указанной формулой и нижеприведенными приемами.
Как и в предыдущем примере, здесь не приняты в расчет високосные годы – ошибка, которой никто не поставит вычислителю в упрек, когда приходится иметь дело с сотнями миллионов.
Что касается правильности нашей формулы, то она выясняется очень просто. Чтобы определить число секунд, заключающихся в данном числе лет, нужно лета (в нашем примере 24) умножить на число секунд в году, т. е. на 365 × 24 × 60 × 60 = 31536000. Мы делаем то же самое, но только большой множитель 31536 разбиваем на два (приписка трех нулей сама собой понятна). Вместо того, чтобы умножать 24 × 31536, умножают 24 на 31500 и на 36, но и эти действия мы для удобства вычислений заменяем другими, как это видно из следующей схемы:
Теперь остается лишь приписать три нуля – и мы имеем искомый результат: 756864000.
Приемы ускоренного умножения
Мы упоминали раньше, что для выполнения тех отдельных действий умножения, на которые распадается каждый из указанных выше приемов, существуют также удобные способы. Некоторые из них весьма не сложны и удобоприменимы; они настолько облегчают вычисления, что мы советуем читателю вообще запомнить их, чтобы пользоваться при обычных расчетах. Таков, например, прием перекрестного умножения, весьма удобный при умножении двузначных чисел. Способ этот восходит к грекам и индусам и в старину назывался «способом молнии» или «умножением крестиком».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.