Юный техник, 2006 № 03 - [6]

Шрифт
Интервал

Один из самых грандиозных приборов человечества всеобщими усилиями строится сейчас в Европейском центре ядерных исследований близ Женевы. Класс установки обычно определяется энергией пучка, которая измеряется в электрон-вольтах (эВ). Самым крупным ускорителем в мире был выработавший свой ресурс, а потому закрывшийся в 2000 году Большой электронно-позитронный коллайдер (LEP), работавший в Европейском исследовательском центре CERN возле Женевы. На следующей ускорительной установке, которую назвали Новым линейным коллайдером (NLC), физики рассчитывают достичь энергии пучка в 250 млрд. эВ.

Электроны и соответствующие им античастицы — позитроны — рождаются в разных концах агрегата длиной более 30 км. Высокочастотное электромагнитное поле несет их друг к другу, как мощная волна несет на себе серфингистов. Столкновение частиц материи и антиматерии, движущихся внутри NLC со скоростью, предельно близкой к скорости света, должно высвободить энергию, достаточную для обнаружения пресловутого бозона Хиггса. Ведь NLC рассчитан на чудовищную энергию столкновения частиц, в нем смогут возникать даже лабораторные «черные дыры».

Все, что происходит при столкновении электронов и позитронов, будет зафиксировано при помощи специальных устройств, называемых детекторами. Попросту говоря, детектор — это сверхбыстродействующи аналог цифрового фотоаппарата. Он состоит из приборов с зарядовой связью, расположенных по кольцу вокруг узкой трубы, в которой происходят столкновения электронов с позитронами.

В течение долей секунды после каждого столкновения измерительные приборы сообщат компьютеру, получили ли они какой-нибудь сигнал, и если да, то какой. Вся эта информация затем сохраняется в обширной базе данных. Обработав около 300 миллионов ее элементов, физик может проследить движение каждой частицы, как сыщик выследил бы скрывающегося преступника по следам его операций с кредитными картами.



Так выглядит клистрон — основной элемент ускорителя.


На пути к «теории всего»

Впрочем, ловят бозон Хиггса не только для того, чтобы убедиться в справедливости предвидения профессора, найти еще одного кандидата на роль «первокирпичика Вселенной». Гипотетическая частица, по мнению многих ученых, позволит сделать очередной шаг по созданию Стандартной модели мира или Единой теории, которую иногда также называют «теорией всего».

Сейчас исследователям известно четыре типа фундаментальных взаимодействий между частицами. Первое и наиболее общее взаимодействие — гравитационное, которое испытывают все частицы без исключения. Оно проявляется в том, что все материальные объекты, будь то микрочастицы или макротела, притягиваются друг к другу с силой, пропорциональной их массам. Это взаимодействие по собственным ощущениям знает каждый человек, а описывается оно законом всемирного тяготения.

Переносчиками гравитационного взаимодействия по идее должны быть гравитоны — электрически нейтральные частицы, которые не имеют массы покоя и распространяются со скоростью света. При обычных плотностях материи гравитационное взаимодействие чрезвычайно слабо. По этой причине гравитоны до сих пор не найдены, хотя их пытаются обнаружить не один десяток лет.

В ядре работают другие силы — электромагнитные. Именно электромагнитное взаимодействие определяет структуру атомов, молекул, а значит, в конечном счете то, что окружающий нас мир таков, каков он есть. Это взаимодействие присуще только электрически заряженным частицам — электронам, протонам, заряженным мезонам. Обеспечивается оно квантами электромагнитного поля — фотонами, которые, подобно гравитонам, не имеют ни заряда, ни массы покоя и распространяются со скоростью света.

Третье, так называемое слабое, взаимодействие наиболее отчетливо проявляется в процессах с участием нейтрино — электрически нейтральной частицы, которая тоже, вероятно, не имеет массы покоя. Слабое взаимодействие имеет одно очень важное свойство: будучи действительно несильным при сравнительно малых энергиях, оно быстро усиливается с ростом энергии взаимодействия. При энергиях порядка нескольких сот гига-электрон-вольт слабое взаимодействие по своему влиянию уравнивается с электромагнитным.

Квантами — переносчиками слабого взаимодействия служат так называемые W- и Z-мезоны — очень тяжелые частицы, с массой примерно 80 и 90 ГэВ соответственно. Интересно, что эти частицы, подобно планете Нептун, были открыты теоретически, «на кончике пера». И лишь затем в начале 1983 года W- и Z-мезоны были обнаружены в экспериментах.

И наконец, четвертое фундаментальное взаимодействие, самое сильное из всех, так и называется сильное. Оно примерно в сто раз сильнее электромагнитного и присуще тяжелым ядерным частицам — нуклонам (протонам и нейтронам), пионам (разновидности мезонов) и их «сородичам». Из этих частиц, именуемых адронами, состоят атомные ядра, а в ходе их взаимодействия выделяется ядерная энергия. В последние двадцать лет выяснилось, что адроны — не элементарные частицы; они состоят из кварков, склеенных друг с другом глюонами.

Таким образом, как мы видим, в мире имеется четыре вида взаимодействий, которые, казалось бы, радикально отличаются друг от друга как по силе, так и по своим особенностям. «Но стоит задуматься, — полагают ученые, — а всегда ли было такое различие между этими взаимодействиями? Нет ли между ними внутренней связи, которая указывала бы на их происхождение от единого, более универсального взаимодействия в результате спонтанного нарушения симметрии?..»


Еще от автора Журнал «Юный техник»
Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2010 № 01

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.