Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [70]
Рис. 5.6. Контур Большого адронного коллайдера, наложенный на фото местности. Слева – горы Юра (Франция), справа – Женевское озеро (Швейцария). Видна взлетно-посадочная полоса аэропорта Женевы. Кольца ускорителя находятся в туннеле под землей, длина большого кольца – 26 659 м. За одну секунду пучок протонов проходит по нему более 11 000 раз
Сверхколлайдер: догнать свет. Но что произойдет с ходом времени (да и с продольными длинами), если ракета летит не со скоростью, равной 0,9999999999 скорости света, а точно со скоростью света? А если ракета разогналась до скорости света, то, значит, весь мир летит ей навстречу с такой же скоростью: как же этот мир будет выглядеть глазами экипажа? Попробуем, впрочем, быть реалистами: с производством быстрых ракет не все пока налажено в практическом плане, поэтому потренируемся на том, что мы действительно умеем разгонять, – на протонах. В Большом адронном коллайдере, как мы видели, протонам остается до скорости света сущая ерунда, меньше трех метров в секунду; что же мешает их преодолеть?
Сократить их, скажем, до полутора метров в секунду мешает отсутствие бюджета на более мощный ускоритель. Но в попытках полностью преодолеть оставшийся метр-с-небольшим в секунду мы обречены на проигрыш – из-за бюджета более фундаментального, чем любой национальный или «всеземной». Из-за бюджета энергии.
С движением связан вид энергии, за которым закрепилось название греческого происхождения: кинетическая энергия. На этих прогулках я говорю о ней просто как об энергии движения. В привычном нам мире – т. е. при малых скоростях – это те самые «пополам», а именно эм-вэ-квадрат-пополам (mv>2/2; m – масса, а v – скорость того, что движется). При увеличении скорости в два раза энергия движения возрастает в четыре раза, при увеличении скорости в три раза – в девять и т. д. Если бы так продолжалось и при скоростях, приближающихся к скорости света c, то разгон протона до этой скорости потребовал бы количество энергии, которое не так сложно было бы обеспечить. Но энергия движения зависит от скорости таким простым образом только при малых скоростях. На самом же деле взаимоотношения материи, движения и энергии более интересные.
Прежде всего энергия связана не только с движением, а со всем без исключения. Все, что имеется во Вселенной, несет в себе энергию, а все то, что с этим происходит, непременно включает передачу энергии или превращение ее из одной формы в другую. Главное свойство энергии в том, что она сохраняется. Она превращается из одной формы в другую, но не может исчезнуть или взяться из ниоткуда[84]. Чтобы протон быстро двигался, надо откуда-то взять необходимую энергию и передать ее протону. Большой адронный коллайдер (рис. 5.6) называется большим, потому что только на достаточно большой протяженности удается установить все те устройства, которые передают энергию протонам (кстати, черпая ее из электросети)[85].
На сцене опять появляется гамма-фактор (он, собственно, никуда уходить и не собирался). Правильное выражение для энергии движения, заменяющее те самые эм-вэ-квадрат-пополам, содержит гамма-фактор, а он ведет себя максимально несдержанно по мере приближения скорости к скорости света – становится сколь угодно большим. Из-за этого для продолжения разгона любого объекта требуется организовать передачу ему все большего и большего количества энергии. Пока протон, с той или иной степенью условности, покоится у нас в лаборатории, его энергия движения равна, конечно, нулю. Возьмемся разгонять его, приближаясь к скорости света c последовательными шагами. Сначала пожелаем, чтобы он двигался со скромной скоростью 1/2 c. Такое желание обернется для нас необходимостью снабдить протон энергией, которая в некоторых единицах, принятых среди тех, кто «занимается протонами», выражается как 0,145 Гэ В. Странное сочетание заглавных и строчных букв, обозначающее гигаэлектронвольты, выглядит довольно коряво, и до конца этого абзаца я просто не буду их явно указывать; нам важны не они, а появившееся число, чтобы сравнивать его с другими числами, которые сейчас возникнут. Итак, если мы нашли способ передать протону эти 0,145 (где уже заметно отличие от правила «эм-вэ-квадрат-пополам», которое дало бы 0,117), мы пройдем полдороги до скорости света; остается еще половина, 1/2 c. Пройдем половину оставшегося, чтобы до скорости света недоставало 1/4 c. Энергия движения такого более быстрого протона окажется в три с лишним раза большей – около 0,480, и эту недостающую энергию протону надо передать. Далее снова сократим отставание от света вдвое (до 1/8 c), затем еще раз вдвое (до 1/16 c), продолжая накачивать энергию в движение протона. После десяти таких уполовиниваний «недостача» до скорости света составит 1/2>10c (что вообще-то все еще не так мало – 292,8 км/с), но для этого понадобится снабдить протон энергией, равной 20,29. После следующих десяти уполовиниваний, когда до скорости света недостанет 1/2>20c (а это уже 286 метров в секунду), энергия движения равна 678,2. Задача передать протону такую энергию вообще-то давно решена, потому что наш протон пока еще медленнее тех, которые разгоняются в Большом адронном коллайдере, но давайте поработаем еще лучше и разгоним протон так, чтобы он отставал от света всего на 1/2
Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.
С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.
Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.
Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.
«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.