Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [238]

Шрифт
Интервал

. Приняв закон сохранения электрического заряда как принцип, мы, в частности, лучше понимаем стабильность мира: одинокий электрон не может исчезнуть, родив вместо себя частицу с меньшей массой (что не запрещено само по себе), потому что в нашей Вселенной отсутствуют частицы с меньшей массой и с электрическим зарядом; заряд электрона некому передать. Но одинокий мюон может превратиться (и, не откладывая, превращается) в более легкие элементарные частицы, включающие электрон, которому и достается электрический заряд мюона. Важное дополнение к закону сохранения электрического заряда состоит в том, что в природе имеются элементарные (наименьшие) заряды и что, хотя электроны и протоны – это элементарные частицы существенно различного вида, участвующие в формировании материи выраженно несимметричным образом, они тем не менее несут в точности противоположные заряды. Из-за этого мир оказывается в целом электрически нейтральным, но при этом в глубине его электрические заряды только и делают, что взаимодействуют друг с другом, чем и определяют способы сборки всех вещей и материалов вокруг нас, включая живую материю. Заряды – это параметры, которые определяют степень участия во взаимодействии, и собрать хоть что-нибудь из одних только нейтральных (т. е. не несущих заряда) «деталей» было бы невозможно.

Связанные с движением законы сохранения – это сохранение энергии (ей посвящено отдельное приложение Б), количества движения и момента количества движения. Количество движения (синоним – импульс) – это произведение массы на скорость, если скорость невелика по сравнению со скоростью света, и более сложное выражение, пригодное для любых скоростей, меньших скорости света; отдельное правило требуется для подсчета количества движения самого света, т. е. электромагнитных волн (а также, строго говоря, и гравитационных волн). Эти правила прекрасно работают вместе: полное количество движения перераспределяется между взаимодействующими частями. Например, давление солнечного света на космические аппараты – результат обмена количеством движения: когда свет поглощается или переизлучается, некоторое количество движения достается спутнику. Разумеется, пока нас интересует какое-то конкретное тело или система, мы говорим об изменении количества движения под действием силы; но если включить в баланс и ту часть мира, со стороны которой сила действует, то полное количество движения остается неизменным. Количество движения – вектор, как и скорость: у него есть не только величина, но и направление; его можно задавать, указав три компоненты вдоль трех выбранных направлений в пространстве, поэтому количество движения – это не одно, а три числа.

Название «момент количества движения» лучше всего воспринимать как иероглиф, в котором отдельные слова не разобрать, но который все же намекает на родство с «просто» количеством движения. Я рискнул называть его количеством вращения. Закон сохранения этой величины – то самое, что вынуждает фигуриста ускорять свое вращение, когда он или она прижимает руки к телу: количество вращения чувствительно к массе, скорости и расстоянию до оси вращения, поэтому при уменьшении расстояния рук от оси скорость должна увеличиться, чтобы количество вращения не изменилось. Тот же механизм лежит в основе второго закона Кеплера: там, где планета (или комета, или что угодно) ближе к Солнцу, она движется быстрее. Количество вращения – тоже вектор, т. е. имеет и величину, и направление. Направлено оно вдоль оси вращения, причем одна из двух возможностей выбирается по определенному правилу.

Среди других законов природы из числа встречавшихся нам – законы Ньютона, закон всемирного тяготения, принцип относительности, абсолютность скорости света в вакууме, уравнения Эйнштейна, правило Борна, уравнение Шрёдингера[304]. Ни один закон природы не может быть «доказан», потому что все они – обобщение наблюдений; всегда есть шанс, что в каких-то ранее не встречавшихся условиях закон перестанет выполняться. (Правила игры вообще сильно различаются в отношении опровержения, для которого достаточно одного ясного контрпримера, и подтверждения, которое всегда бывает лишь частичным.) Такие «отказы» действительно случаются, но в целом на удивление редко. Тем интереснее все случаи отчетливого несоответствия предсказаний и наблюдений: они могут служить сигналами о присутствии неучтенных пока факторов или же действительно указывать на неточность самих законов. Про известные законы природы (пожалуй, кроме законов сохранения) мы не думаем, что они представляют собой «окончательную истину». Но придумывание новых законов природы – тех, которые поправляют известные, когда они (известные) перестают хорошо действовать, – непростая задача, потому что любые предложения по усовершенствованию не должны портить того, что уже хорошо работает в своей области применимости. Требования к кандидату в законы природы включают преодоление довольно высокого барьера: предлагаемая новая схема рассуждений должна как минимум воспроизвести все то, что уже достигнуто на основе имеющихся концепций, в том числе количественные предсказания, не породив при этом следствий, которые явно противоречат опыту. Существенный момент здесь состоит в том, что необходимо принимать


Рекомендуем почитать
Взламывая анатомию

Наше тело — удивительная и сложная машина, все части которой работают слаженно, взаимодействуют с окружающей средой и даже учатся у нее.Эта книга подробно рассказывает об устройстве и работе тела, помогая понять, как развивались наши знания о нем. Она дает представление обо всех системах организма, объясняет медицинскую терминологию и отвечает на важнейшие вопросы. Дочитав до конца, вы заглянете не только в прошлое, настоящее и будущее, но и внутрь себя.


Ринг «быков» и «медведей»

«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.


Блики на портрете

Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.


Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.