Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [165]
Рис. 10.2. Линии, остающиеся в воздухе, дают представление о траекториях, которым следовали концы крыльев
А вот этого в природе быть не может. На фундаментальном уровне мира обнаруживаются непреодолимые препятствия к тому, чтобы положение и количество движения были точно определены одновременно. Поэтому и точные траектории отсутствуют. Траектория – лишь приближенное понятие, пригодное для всех окружающих нас тел во всех обычных вариантах их движений. Траекторию кончика крыла можно в принципе описать во много тысяч раз точнее, чем ее задает дымный след в воздухе, но, продолжая увеличивать точность, мы в конце концов упремся в предел. В свойства нашей Вселенной встроено фундаментальное ограничение на точность в связи с движением; актуальным и даже определяюще важным это ограничение становится для разнообразной мелочи типа электрона. С чем-то похожим – и по существу близким – мы уже сталкивались в связи с рис. 9.15. Там изображена плоскость, которую я на свой страх и риск назвал Плоскостью действия. Каждая точка на ней, как и на всякой плоскости, имеет две координаты. Одна из них показывает положение интересующего нас небольшого тела вдоль выбранного в пространстве направления, а другая показывает количество движения, которое имеет тело, когда проходит эту точку, – точнее, количество движения вдоль выбранного направления. На рис. 9.15 на Плоскости действия показаны прямоугольные площадки разных пропорций, но одной и той же площади. Совсем безобидное жульничество с моей стороны состоит в том, что на рис. 10.3 я повторил то же изображение Плоскости действия, но площадь всех прямоугольников установил равной не h, как раньше, а ħ/2 – такой она должна быть в задаче, которая сейчас обсуждается: о точности, с которой определена траектория. Буква ħ здесь – это, как мы упоминали мимоходом, постоянная Планка h, деленная на длину окружности единичного радиуса (2π). Поступать так с постоянной Планка h приходится столь часто, что специальное обозначение оказалось не лишним. Придумал его, по-видимому, Дирак, но никаких пояснений по поводу мотивировки символа ħ он не приводит[202]. Закон природы, иллюстрируемый рис. 10.3, состоит в том, что на Плоскости действия не существует позиционирования более точного, чем в пределах прямоугольника площадью ħ/2.
Рис. 10.3. Несколько прямоугольников на Плоскости действия, которые имеют одну и ту же площадь ħ/2. Они задают фундаментальные «ограничения на фокусировку», но не в обычном пространстве, а на воображаемой плоскости, объединяющей координату и количество движения вдоль нее
Можно представить себе программу рисования на компьютере с не совсем обычным инструментом «кисть» или «карандаш»: желая поточнее разместить, например, электрон на Плоскости действия, вы пытаетесь поставить точку штрихом покороче, но кисть не позволяет сделать отметку, которая имела бы площадь меньше заданной. Можно сделать прямоугольник очень узким по горизонтали, как самый левый из прямоугольников на рис. 10.3: тогда вы с неплохой точностью заявите пространственное положение электрона, но, увы, точность, с которой определено его количество движения, получится очень низкой. Если же настроить кисть так, чтобы ее узкий штрих с высокой точностью определял количество движения, то она непременно будет красить очень широко вдоль направления, определяющего положение в пространстве. Это и означает, что у электрона нет траектории, потому что траектория – это и положение, и количество движения. Заколдованные прямоугольники работают только для пар: положение вдоль выбранного направления – количество движения вдоль того же направления. Крест-накрест (скажем, положение вдоль направления 3 – количество движения вдоль направления 1) никаких ограничений нет.
Что происходит?
Сначала о названиях. Власть заколдованных прямоугольников называется принципом неопределенности, часто – принципом неопределенности Гайзенберга. Слово «принцип» обычно означает, что это утверждение принимается за основное; «заколдованные прямоугольники», впрочем, можно вывести математически, приняв в качестве основного набор из нескольких других идей (сам Гайзенберг, впрочем, был склонен придавать своему принципу самостоятельное значение вне зависимости от других положений). Этот набор идей и составляет квантовую механику – основу нашего понимания мира на малых масштабах; а поскольку современные технологии часто опираются на управление происходящим именно на таких масштабах, это еще и основа технологий. В первоначальной постановке задачи требовалось разобраться с тем, как же электрон «движется» в атоме. Это понимание возникло в 1925–1926 гг., и первым к нему пришел Гайзенберг. Позже у квантовой механики появилось много других задач; в наше время часто говорят о квантовой теории.
Описание мира в рамках квантовой механики сильно отличается от привычного тогда, когда некоторые величины имеют значения, сравнимые с постоянной Планка h; когда же их значения много больше h, эффекты квантового устройства становятся несущественными и вполне годятся упрощенные правила, по которым существует привычный мир вещей вокруг нас
Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.
С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.
Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.
Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.
«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.