Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [166]
Посмотрим, что означают заколдованные прямоугольники для частицы массой в один миллиграмм (почувствуем себя ботаником Брауном; см. главу «прогулка 9»). Если считать, что положение такой частицы задано с точностью в один нанометр, что составляет одну сторону заколдованного прямоугольника на Плоскости действия, то, зная его площадь, мы найдем ограничение на неопределенность в количестве движения частицы, а после деления на массу – и в ее скорости. Подставляя конкретные числа, мы видим, что неопределенность в скорости составляет одну двадцатую от одной миллиардной нанометра в секунду – что едва ли можно назвать ограничением. Вполне можно было задать положение в двадцать миллиардов раз точнее, и все равно неопределенность скорости осталась бы на уровне одной миллионной миллиметра в секунду. Со всех практических точек зрения можно считать, что частица весом в один миллиграмм прекрасно пребывает на своей траектории. Так получается из-за того, сколь огромна ее масса. Возьмем что-нибудь полегче, например бактерию Escherichia coli (кишечную палочку). Для оценки можно считать, что ее диаметр около одного микрона, длина около двух микрон, а масса – 1 пг. Вот пикограмм – это мало: 10>–12 г. Испытывает ли E. coli квантовое беспокойство или, хуже того, квантовые метания из-за невозможности иметь одновременно точное положение и точную скорость? Определим условие ее комфорта как неопределенность положения максимум в одну десятитысячную от ее длины; для сравнения, мне кажется, что меня не должна беспокоить неопределенность моего положения в десятитысячную долю моего роста, т. е. около 0,2 мм. Для бактерии это означает, что мы локализовали ее с точностью до двух десятых нанометра. Тогда из заколдованного прямоугольника получается, что неопределенность ее скорости составляет около четверти нанометра в секунду. Нет, E. coli может жить спокойно, не испытывая ни малейшего квантово-механического дискомфорта.
Но для электрона все уже по-другому – из-за его массы. Желание локализовать электрон в пределах одного нанометра означает, что неопределенность его скорости составляет около (чуть меньше) 58 километров в секунду. Точнее этого определить его скорость нельзя, а с такой неопределенностью в скорости никак не получается сказать, что электрон движется по траектории: даже из пределов десяти нанометров он норовит выскочить за доли пикосекунды. Попытка четко локализовать электрон оказывается совершенно бесполезной, потому что невозможно предсказать, где мы его встретим при следующей попытке, даже если она делается почти сразу после первой.
Спасибо неопределенности. Принцип неопределенности, при всей его необычности, работает на благо человечества, да и вообще практически всего сколько-нибудь интересного, что есть во Вселенной: он позволяет звездам гореть. Дело в том, что принцип неопределенности позволяет проходить сквозь стены.
Все, что говорилось о «горении» Солнца на прогулке 5, было правдой, но это была не вся правда. Да, Солнце и другие звезды черпают энергию из дефекта массы при слиянии меньших атомных ядер в большие, прежде всего из слияния протонов. Но чтобы соединиться в составное ядро, протонам необходимо преодолеть взаимное электрическое отталкивание и сблизиться так, чтобы «защелкнулся замок» ядерного взаимодействия: на очень малых расстояниях оно намного сильнее электрического, и это позволяет протонам оставаться в тесных взаимных объятиях. Но пока этого не произошло, электрическое отталкивание играет роль разделительной стенки между любыми двумя протонами. В обычном веществе вокруг нас у протонов, которые еще не попали в одно ядро, совсем нет возможности для сближения, необходимого для слияния. Шансы могли бы появиться в недрах звезд: температура в ядре Солнца – около 15 млн градусов, из-за чего протоны мечутся там со средней скоростью около 600 км/с (и каждый испытывает миллиарды столкновений в секунду). Однако и этого оказывается недостаточно: на том расстоянии, где ядерное взаимодействие готово всерьез взяться за дело, электрическое отталкивание между двумя протонами настолько велико, что для преодоления его «с наскока» – за счет движения – требуется температура не 15 млн, а около 10 млрд градусов. Стена продолжает разделять каждую пару протонов, которые могли бы соединиться. Солнце «не должно» светить
Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.
С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.
Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.
Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.
«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.