Восемь этюдов о бесконечности. Математическое приключение - [9]

Шрифт
Интервал

Существует множество версий относительно смерти Пифагора. Как вы, возможно, догадываетесь, они по большей части весьма драматичны. Я же предлагаю вам самую прозаическую из этих версий: Пифагор умер от естественных причин в возрасте 90 лет.

О музыке и числах

В то время как Пифагор и его ученики исследовали законы Вселенной, они изучали и законы музыки. Вы, конечно, помните, что Пифагор обожал распевать песни Гомера и Гесиода («Величайшие хиты Древней Греции»), бренча на своей лире. Пифагор полагал, что музыка оказывает огромное влияние на душу и может вызывать чрезвычайно сильные эмоции. Если вы в этом сомневаетесь, прочтите «Крейцерову сонату» Льва Толстого. Сейчас нам ясно, что открытое Пифагором наличие у музыкальных гамм численной основы сильнейшим образом повлияло на пифагорейцев. Можно привести множество разных примеров проявления этой численной основы. Например, Пифагор установил, что длины струн двух нот, отстоящих друг от друга в точности на одну октаву (например, от до – до – до), соотносятся как 1:2. Струны двух нот, отстоящих на квинту (например, до – соль), находятся в соотношении длин 2:3, а струны двух нот, отстоящих на кварту (например, до – фа) – в соотношении 3:4.

Музыка есть удовольствие, которое человеческий разум испытывает от счета, не сознавая, что он считает.

Готфрид Лейбниц

Открытие Пифагора – что музыку можно преобразовывать в математические выражения – было важным шагом на его пути к сенсационному выводу, что и весь мир в целом так или иначе основан на числах. Более того, Аристотель отмечает в «Метафизике», что пифагорейцы первыми стали изучать математику и пришли к заключению, что законы математики управляют законами всего сущего.

Какие научные законы гарантируют, что должны существовать научные законы?

Мартин Гарднер

Математика управляет и изобразительным искусством. Перспектива основана на геометрии и пропорциональности (размеры предметов, изображенных на двумерной поверхности, уменьшаются пропорционально увеличению расстояния от зрителя), а принципы композиции основываются на свойствах геометрических фигур.

Геометрия есть основа всей живописи.

Альбрехт Дюрер

Но Пифагор пошел на шаг дальше. Он также использовал язык геометрии для определения хорошего и дурного, правильного и неправильного. Например, вместо терминов «хороший» и «дурной» он употреблял слова «прямой» и «искривленный» (по-гречески, разумеется). Мы и сейчас иногда называем нечестное «кривым», а ложь «кривдой». Прямая линия казалась ему благородной, искривленная – неблаговидной. Возможно, отголоски этой концепции до сих пор можно найти в выражении «прямой человек», так как никакой связи между осанкой человека и его искренностью или добросовестностью, разумеется, нет.

Начало прекрасной дружбы – дружественные числа

Аристотель сказал однажды, что истинные друзья – это два тела с одной общей душой. А как определял дружбу Пифагор? Тут нас ожидает сюрприз.

По словам ученого-неоплатоника Ямвлиха (ок. 245 – ок. 325), автора еще одной биографии Пифагора, пифагорейское определение дружбы выражается двумя числами – 284 и 220.

Что?! Почему?!

Чтобы понять, откуда взялась эта идея, сложите все делители числа 220 (числа, на которые 220 делится без остатка), а затем сложите все делители числа 284. Сами эти числа включать в суммы не нужно.

Делители 220 – 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, а их сумма равна 284.

Делители 284 – 1, 2, 4, 71 и 142, а их сумма равна (чему бы вы думали?) 220!

Пифагорейцы считали, что близкие друзья подобны паре чисел, сумма делителей каждого из которых равна второму числу. В математике такую пару чисел называют дружественными числами.

Другие пары дружественных чисел можно найти при помощи компьютера. Помимо пары (220, 284) есть еще (1184 и 1210), (2620 и 2924), (5020 и 5564) и (6232 и 6368). Кроме этих пяти, других таких пар среди чисел до 10 000 нет. Если вам совсем нечего делать, попробуйте проверить, действительно ли эти пары – пары дружественных чисел. Другими словами, сложите собственные делители каждого числа (без самого этого числа) и посмотрите, равна ли их сумма второму числу пары.

Если хотите, вы можете взяться и за еще более трудную задачу – попытаться найти другие пары дружественных чисел. Для этого вы, вероятно, захотите прибегнуть к помощи компьютера, но имейте в виду, что в 1636 г. французский математик-любитель Пьер Ферма установил, что числа 17 296 и 18 416 образуют пару дружественных чисел, а два года спустя знаменитый французский философ и математик Рене Декарт открыл еще одну такую пару – 9 363 584 и 9 437 056.

ДЕКАРТ, БЕСКОНЕЧНОСТЬ И БОГ

На Декарта произвела глубокое впечатление концепция «бесконечности». В книге «Рассуждения о первой философии» он даже использует эту концепцию для «доказательства» существования Бога. Рассуждает он при этом приблизительно следующим образом:

«Поскольку сам я – существо конечное, я, очевидно, не могу изобрести концепцию бесконечности, так как по-настоящему охватить в своих мыслях понятие бесконечности может лишь нечто, само бесконечное. Следовательно, создателем концепции бесконечности может быть только Бог. Поскольку я могу осознать бесконечного Бога, а Бог – единственный, кто мог создать эту идею, значит, справедливо утверждение, что Бог существует!»


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Пурпурный. Как один человек изобрел цвет, изменивший мир

Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.


Индивидуальный и общественный гомеостазис

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Безопасность на воде и оказание помощи пострадавшим

В издании изложены основные действия по оказанию помощи пострадавшим на воде. Дана характеристика видов утопления, способов выполнения искусственного дыхания, непрямого массажа сердца и мер по предупреждению несчастных случаев.Предназначено для широкого круга читателей, а также может быть использовано инструкторами, методистами, работающими с детьми и взрослыми в условиях, связанных с водной средой.


Атлантиды ищите на шельфе

Обширные районы нынешнего шельфа Охотского, Берингова, Черного и многих других морей были еще шесть — десять тысяч лет назад сушей, на которой обитали люди. На шельфе же находятся и руины затонувших городов и поселений, ушедших под воду не только в эпоху античности и средневековья, но и в Новое время. Об этих реальных, а не гипотетических «атлантидах» и рассказывает заключительная книга трилогии, посвященной «новым атлантидам».


Затаенное имя - Тайнопись в 'Слове о полку Игореве'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Алфавитно-предметный указатель к систематическому каталогу

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.