Восемь этюдов о бесконечности. Математическое приключение - [11]

Шрифт
Интервал

Головоломка для сильных учеников

Докажите, что любое четное совершенное число заканчивается либо на 6, либо на 8. В этом вам могут помочь приведенные ниже равенства.

6 = 1 + 2 + 3.

28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 1³ + 3³.

496 = 1 + 2 + 3 + 4 + … + 31 = 1³ + 3³ + 5³ + 7³.

8128 = 1 + 2 + 3 + 4 + … + 127 = 1³ + 3³ + 5³ + … + 15³.

Более того, французский математик Эдуард Люка (1842–1891) доказал даже, что любое четное совершенное число должно заканчиваться на 16, 28, 36, 56, 76 или 96. Как ему это удалось? Не без труда!

Пока что мы видели только семь совершенных чисел, и все они четные. Естественно, хочется спросить: а бывают ли нечетные совершенные числа?

В конце XIX в. британский математик Джеймс Сильвестр писал, что открытие нечетного совершенного числа было бы настоящим чудом. Даже теперь многие математики склонны полагать, что ответ на этот вопрос должен быть отрицательным. Тем не менее доказать это пока что никто не смог. Вот вам еще одна «открытая проблема» – и еще одна возможность добиться славы и успеха!

Нет ответа и на другой интересный вопрос: бесконечно ли множество совершенных чисел? Можно ли продолжать находить совершенные числа, как бы далеко мы ни продвигались по множеству натуральных чисел? Или же где-то существует самое большое совершенное число?

Эта задача еще не решена и тесно связана с числами Мерсенна, к которым мы еще вернемся.

Сколько весит число? Числа совершенные, «толстые» и «тонкие»

Раз уж мы живем в эпоху диет, можно сказать, что натуральные числа делятся на три категории: совершенные, «толстые» и «тонкие». У «толстого» числа сумма собственных делителей больше самого числа, а сумма собственных делителей «тонкого» числа (вы, наверное, уже догадались…) меньше самого этого числа[11]. Например, 12 – число упитанное, потому что сумма его делителей (1, 2, 3, 4 и 6) равна 16. А вот 10 – число худощавое, так как 1 + 2 + 5 = 8.

А как обстоит дело с женскими числами? То есть нечетными? Бывает ли и у них лишний вес? Существуют ли такие нечетные числа, суммы собственных делителей которых больше самих этих чисел? Если немного поэкспериментировать, может показаться, что сложение собственных делителей нечетного числа всегда дает значение, меньшее самого числа (проверьте несколько чисел и убедитесь в этом сами). Если брать только числа меньше 900, можно прийти к убеждению, что нечетные числа никогда не бывают «толстыми». Но пусть это вас не обманывает! Исследование конечного количества чисел, каким бы большим оно ни было, не означает, что следующее число не окажется исключением из правила. На самом деле нечетные числа бывают «толстыми»: сумма собственных делителей 945 (сложите 1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189 и 315) равна… 975. Таким образом, мы открыли число 945 – наименьшее «толстое» нечетное число. И все же избыточный вес встречается у нечетных чисел довольно редко.

Мы еще вернемся в этой книге к теме совершенных чисел.

Интересные и скучные люди, интересные и скучные числа

Попытки создания «окончательных» списков иногда приводят к возникновению парадоксов следующего типа: из самого определения немедленно следует, что объект, задаваемый этим определением, должен быть исключен из списка. Что это значит?

Представим себе, что мы составляем два списка. Один из них – это список имен всех интересных людей на свете в порядке их интересности. Второй – список всех остальных. Он тоже будет упорядоченным: от самого скучного человека на свете до «слегка» неинтересного.

Вот как выглядят верхние части обоих списков.

Интересные люди: Пифагор, Леонардо да Винчи, Клеопатра, Моцарт, Эйнштейн, Мэрилин Монро, Сократ, Мессалина, Байрон, Наполеон, Будда, Жанна д’Арк, Александр Македонский…

Неинтересные люди: Реджинальд Зевокк, Брунгильда Дремотная, Якоб Снотвор, Владимир Сиестин, Билл Занудинг, Найлз Коматоз, Бернард Нуичтович, Карл Спячкин, Гарри Тоскливер, Тим Тупп…

Однако не все так просто. Вот, например, Реджинальд Зевокк. Если верить нашему списку, он самый скучный человек на свете. Но сам этот факт делает его человеком интересным. Ну в самом деле представьте себе титул САМОГО скучного человека в мире! Поэтому мы должны перенести его в список интересных людей. Разумеется, он не попадет даже близко к вершине этого списка, но тем не менее должен оказаться в нем, причем, вероятно, на каком-нибудь вполне достойном месте.

А теперь посмотрите, что происходит дальше. Поскольку мы убрали Реджинальда из скучного списка, теперь самым скучным человеком на свете стала Брунгильда Дремотная. Но это, в свою очередь, делает несколько интересной ее, что означает, что и ее следует перенести в первый список. Если мы продолжим этот процесс, мы неизбежно придем к выводу, что в мире вообще нет – и никогда не было – ни одного неинтересного человека. Я уверен, что вы давно уже обнаружили ошибку этого рассуждения.

В мире математики существует своя популярная версия парадокса скучных людей: в ней речь идет о множестве натуральных чисел, которые невозможно описать, используя менее 1000 слов. Отметим, что количество слов конечно (например, двадцатое издание «Оксфордского словаря английского языка» содержит ровно 171 476 слов), а в нашем распоряжении ограниченное число слов (1000), следовательно, и количество таких чисел конечно. Тем не менее существует наименьшее натуральное число, которое невозможно описать, используя менее 1000 слов. Обозначим его


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Человек в поисках себя. Очерки антропологических и этических учений. Том 1. Античность и Средневековье

Работа представляет комплексный анализ антропологических и этических учений с древнейших времен до современности в их взаимозависимости и взаимовлиянии. Адресуется студентам и аспирантам гуманитарных вузов, а также широкому кругу читателей.


Беседы о науке

Штрихи к портретам известных отечественных и зарубежных деятелей науки: академиков – Г. Марчука, Л. Окуня, Ж. Алферова, А.Сахарова, С.Вавилова, Ф.Мартенса, О.Шмидта, А. Лейпунского, Л.Канторовича, В.Кирюхина, А.Мигдала, С.Кишкина, А. Берга, философов – Н.Федорова, А. Богданова (Малиновского), Ф.Энгельса, А. Пятигорского, М.Хайдеггера, М. Мамардашвили, В.Катагощина, выдающихся ученых и конструкторов – П.Чебышёва, К. Циолковского, С.Мальцова, М. Бронштейна, Н.Бора, Д.Иваненко, А.Хинчина, Г.Вульфа, А.Чижевского, С. Лавочкина, Г.Гамова, Б.


Тайна субъективных переживаний поддается разгадке

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


И по Арсеньеву прошлась 'Лубянская лапа ЧЕКА'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Об опыте Стефана Маринова

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сборник статей о НЛО

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.