Восемь этюдов о бесконечности. Математическое приключение - [39]

Шрифт
Интервал

В начале XX в. еще существовали острые разногласия относительно значения теории Кантора и ее справедливости. Тем не менее в 1904 г. Кантор был награжден медалью Сильвестра, высшей наградой для математиков, которую присуждает Лондонское королевское общество. Она названа так в честь английского математика Джеймса Джозефа Сильвестра. По иронии судьбы предыдущим лауреатом этой награды был непримиримый соперник Кантора Анри Пуанкаре[40].

Математика – это музыка логики.

Джеймс Джозеф Сильвестр

В число наиболее пылких поклонников Кантора входили Бертран Рассел (1872–1970){27} и Давид Гильберт, который назвал теорию множеств Кантора «величайшим произведением математического гения и человеческой мысли».

Никто не изгонит нас из того рая, который создал для нас Кантор.

Давид Гильберт

Рай Кантора – это рай для дураков. Его теория смехотворна и совершенно бессмысленна.

Людвиг Витгенштейн

Очевидно, даже величайшие философы иногда несут чушь.

Апология Кантора

Моя теория прочна как скала; любая стрела, выпущенная в нее, быстро вернется к своему лучнику. Почему я в этом уверен? Потому что я изучал ее со всех сторон на протяжении многих лет; потому что я исследовал все возражения, которые когда-либо выдвигались против бесконечных чисел; а прежде всего потому, что я проследил, так сказать, ее корни до исходной и несомненной первопричины всего сотворенного.

Георг Кантор

Сегодня значение теории множеств Кантора очевидно всем тем, кто имеет дело с высшей математикой. Современные варианты теории множеств, развившиеся в результате его первопроходческих исследований, служат теперь основой значительного числа математических теорий, разработанных в XX в.

Пора и нам познакомиться с теорией множеств Георга Фердинанда Людвига Филиппа Кантора.

Введение в теорию множеств. Что такое множество?

В этом и следующих разделах мы попытаемся понять центральные идеи канторовой теории множеств. Начнем с самого фундаментального понятия – множества. Что такое «множество»?

Вот интуитивное определение, которое служило математикам на самой заре эпохи теории множеств:

ОПРЕДЕЛЕНИЕ МНОЖЕСТВА

Любой набор объектов.

Это определение кажется слишком общим. В нем даже нет требования, чтобы у объектов, составляющих множество, было нечто общее. Поэтому неудивительно, что со временем это определение породило немало проблем.

Как можно определить множество? Один из способов сводится к перечислению всех входящих в него объектов. Например, А = {Густав Малер, Густав Климт, Гюстав Эйфель, Густав Холст, Густаво Дудамель, Гюстав Доре, Густаво Бокколи, Гюстав Курбе, ураган «Густав», Густав V Шведский}. В этом множестве ровно десять элементов, и у всех этих элементов есть одно общее свойство – наличие слова «Густав» в той или иной форме.

Но общих черт может и не быть. Вот другой пример совершенно добропорядочного множества: B = {1729, a, 4, {4}, Пушкин, Пушкаш, $, множество}. Это попросту множество из восьми, по-видимому, случайных объектов, перечисленных выше.

Важно иметь возможность сказать, является или не является тот или иной объект элементом определенного множества. Шведский математик Магнус Густав Миттаг-Леффлер не входит в множество А, хотя в его имени и есть слово «Густав», потому что он не определен как элемент этого множества. А вот знак доллара входит в множество В, потому что он включен в список элементов этого множества.

Этот метод – то есть перечисление всех элементов – оказывается не слишком подходящим для определения, скажем, множества всех четных чисел. Поэтому при определении множества можно применять другой прием – использовать многоточие. Тогда мы сможем определить множество четных чисел: E = {2, 4, 6, 8…}. Однако «правило», обозначенное многоточием, не всегда бывает ясным и общепонятным. Посмотрите, например, на следующее множество: T = {1, 3, 6, 10, 15…}. Это множество треугольных чисел (дополнительную подсказку дает буква, выбранная для обозначения этого множества). Но это может быть очевидно не всем. Впрочем, даже те, кто не знаком с концепцией треугольных чисел, могут догадаться, как продолжить этот ряд.

Но так бывает не всегда. Вот еще один пример: F = {1, 3, 9, 33, 153…}. Какие значения должны стоять на месте многоточия? Вы догадались?

Вот ответ:

1! = 1;

1! + 2! = 3;

1! + 2! + 3! = 9;

1! + 2! + 3! + 4! = 33;

1! + 2! + 3! + 4! + 5! = 153.

Следовательно, следующее число будет

1! + 2! + 3! + 4! + 5! + 6! = 873

и так далее.

Множество также можно определить, задав общее свойство, определяющее его элементы. Например, «множество всех бывших и действующих игроков NBA», «множество всех атомов во Вселенной», «множество простых чисел», «множество счастливых людей», «множество всех четных чисел, которые невозможно представить в виде суммы двух простых чисел», «множество чисел, больших самих себя», «множество борцов сумо, которые весят более 250 килограммов», «множество всех фильмов, поставленных Андреем Тарковским», «множество всех стихотворений, написанных Арсением Тарковским» (поэт Арсений Тарковский был отцом великого русского кинорежиссера Андрея Тарковского) и так далее.

Как, вероятно, уже поняло большинство читателей, множество обычно обозначают заглавными буквами латинского алфавита – A, B, C, D…


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Человек и компьютер: Взгляд в будущее

Сегодня искусственный интеллект меняет каждый аспект нашей жизни — ничего подобного мы не видели со времен открытия электричества. Но любая новая мощная технология несет с собой потенциальные опасности, и такие выдающиеся личности, как Стивен Хокинг и Илон Маск, не скрывают, что видят в ИИ возможную угрозу существованию человечества. Так стоит ли нам бояться умных машин? Матчи Гарри Каспарова с суперкомпьютером IBM Deep Blue стали самыми известными в истории поединков человека с машинами. И теперь он использует свой многолетний опыт противостояния с компьютерами, чтобы взглянуть на будущее искусственного интеллекта.


Десять самых красивых экспериментов в истории науки

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.


Удивительное рядом: самые необычные природные явления

Самые необычные природные явления: брайникл, фата-моргана, прибрежное капучино, огни Святого Эльма, шаровая молния, огненная радуга, огненный вихрь, двояковыпуклые облака, красные приливы, световые столбы, волны-убийцы.


Кто вы, рудокопы Росси?

Нам предстоит познакомиться с загадочным племенем рудокопов, обитавших около 2–4 тысячелетий назад в бассейне реки Россь (Западная Белоруссия). Именно этот район называл М. В. Ломоносов как предполагаемую прародину племени россов. Новые данные позволяют более убедительно обосновать и развить эту гипотезу. Подобные знания помогают нам лучше понять некоторые национальные традиции, закономерности развития и взаимодействия культур, формирования национального характера, а также единство прошлого и настоящего, человека и природы.http://znak.traumlibrary.net.


Компьютер Бронзового века: Расшифровка Фестского диска

Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.


Неопознанные летающие объекты - величайшая научная проблема нашего времени

Автором произведенена попытка проследить и систематизировать историю появления НЛО.