Восемь этюдов о бесконечности. Математическое приключение - [37]

Шрифт
Интервал

, что если бы этот джентльмен прожил бесконечно много дней, он вполне смог бы рассказать всю историю своей жизни. В самом деле? С одной стороны, до каждого из дней его жизни в конце концов дошла бы очередь в повествовании. О 10 000-м дне своей жизни он рассказал бы на 10 000-м ее году. С другой стороны, каждый проходящий день увеличивает разрыв между жизнью прожитой и жизнью описанной еще на один год. Получается своего рода состязание Ахиллеса с черепахой, в котором Ахиллес пробегает целый год, а черепаха – всего лишь день. Но, поскольку в распоряжении черепахи имеется бесконечное время, она рано или поздно добирается до всех тех мест, в которых побывал Ахиллес.

БЕСКОНЕЧНОСТЬ И ДАЛЕЕ: НЕСКОНЧАЕМОЕ ПУТЕШЕСТВИЕ

С незапамятных времен бесконечное волновало человека более чем какой-либо другой вопрос. По-видимому, не существует другой идеи, которая вдохновляла бы, но и тревожила бы человеческий разум сильнее, чем концепция бесконечности; но именно по этой причине она и нуждается в разъяснении более чем какая бы то ни было другая концепция.


Эти слова взяты из статьи «О бесконечном» (Über das Unendliche)[37] великого математика XX в. Давида Гильберта (1862–1943).

Внимательно изучив первую часть той книги, которую вы держите в руках, вы можете заметить, что главная ее героиня – «бесконечность»: царство чисел есть царство бесконечное; и многие, а может быть, и большинство из ее загадок и секретов связаны, прямо или косвенно, с концепцией бесконечности.


Математика – наука бесконечности.

Герман Вейль

6

Царство бесконечности Георга Кантора: Теория множеств

Любовь с третьего урока

Предметом, который больше всего увлекал меня на первом курсе математического факультета университета, была теория множеств. Это название не кажется особенно привлекательным и даже приблизительно не описывало того, что изучалось в этом курсе. Начало не предвещало ничего хорошего: поразительно скучные определения, аксиомы и соотношения. Но уже через два занятия я понял, что этот курс на самом деле должен называться теорией бесконечных множеств, потому что речь в нем идет именно о бесконечном, с демонстративным пренебрежением к завету Галилео Галилея, призывавшего этим не заниматься. Кроме того, обсуждение бесконечности не было затемнено какими-либо метафизическими или теологическими соображениями – а я уже был знаком с такими взглядами, и некоторые из них – например антиномии Канта, концепции Николая Кузанского или мировоззрение Джордано Бруно (на которого Николай Кузанский оказал большое влияние) – меня весьма вдохновляли. Но теперь все было совсем по-другому, и я чувствовал, что передо мной разворачивается нечто не похожее ни на что из того, что я знал раньше. У меня было предчувствие, что мне откроется нечто чудесное.

В лекциях по теории множеств и ее главному герою, бесконечности, в высшей степени увлекательных и интригующих, которые читал мой ныне покойный учитель Мордехай Эпштейн (я чрезвычайно благодарен ему), эта тема раскрывалась в очень точной, чисто математической манере. Внезапно я узнал, что можно сравнивать разные виды бесконечности: что бывают бесконечности бо́льшие и бесконечности меньшие; более того, существует бесконечный спектр бесконечностей! Я был заворожен.

Кто же был тот удивительный человек, настолько близко знакомый с бесконечностью, что он умел распознавать и различать разные ее виды? Этим человеком был Георг Кантор, и теорию множеств, которую он разработал, часто называют в его честь канторовой теорией множеств.

Георг Кантор – человек, видевший бесконечность

Георг Фердинанд Людвиг Филипп Кантор родился в 1845 г. в Санкт-Петербурге. Его научная карьера началась в 1862 г. в Цюрихском университете. Год спустя, когда по смерти отца ему досталось весьма солидное наследство, Кантор перевелся в Берлинский университет, где изучал математику, физику и философию. Лето 1866 г. Кантор провел в Гёттингенском университете, который был в то время главным математическим центром (и оставался таковым вплоть до Второй мировой войны). В 1867 г. Кантор получил в Берлинском университете докторскую степень за работу по теории чисел. Некоторое время он преподавал в этом же городе в школе для девочек, а затем начал работать в Университете города Галле, где и оставался до последних лет жизни. В 1872 г. Кантор познакомился с Рихардом Дедекиндом, и это знакомство положило начало их личной и профессиональной дружбе.

В 1874 г. в жизни Кантора произошли два важных события. Первое – он женился, и этот брак впоследствии дал миру шестерых детей. Вторым событием была публикация его революционной статьи о бесконечных множествах под названием «Об одном свойстве совокупности всех вещественных алгебраических чисел» (Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen)[38]. Ее название не очень-то понятно, и мне кажется, что даже перевод с немецкого не слишком помогает вам осознать, о чем эта статья. Тем не менее нет никаких сомнений, что именно она положила начало изучению теории множеств и в течение 25 лет оставалась краеугольным камнем этой дисциплины.


Еще от автора Хаим Шапира
Счастье и другие незначительные вещи абсолютной важности

Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.


Гладиаторы, пираты и игры на доверии. Как нами правят теория игр, стратегия и вероятности

Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.


Рекомендуем почитать
Научная журналистика как составная часть знаний и умений любого ученого. Учебник по научно-популярной журналистике

Эта книга адресована сразу трем аудиториям – будущим журналистам, решившим посвятить себя научной журналистике, широкой публике и тем людям, которые делают науку – ученым. По сути дела, это итог почти полувековой работы журналиста, пишущего о науке, и редактора научно-популярного и научно-художественного журнала. Название книги «Научная журналистика как составная часть знаний и умений любого ученого» возникло не случайно. Так назывался курс лекций, который автор книги читал в течение последних десяти лет в разных странах и на разных языках.


Фантастическая картотека

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


От Библии ни на шаг!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электрошокеры - осторожно, злая собака!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Беседы о сельском хозяйстве

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Третья мировая война окончена

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.