Восемь этюдов о бесконечности. Математическое приключение - [24]
Близнецы, тройняшки, кузены и сексуальные простые числа
Два простых числа считают близнецами, если их разность равна 2. Например, пары (3, 5), (5, 7), (11, 13), …, (431, 433)… – это пары чисел-близнецов.
Бесконечно ли количество простых чисел-близнецов?
Из одного того, что количество простых чисел бесконечно, не следует, что ответ на этот вопрос должен быть утвердительным.
Перед вами триплет простых чисел{16}: (3, 5, 7). Докажите, что это единственная возможная «тройка близнецов».
Пары простых чисел, разность которых равна 4, – например (3, 7), (7, 11), (19, 23), …, (223, 227), – называют двоюродными простыми числами или кузенами. Бесконечно ли количество таких пар?
Пары простых чисел, отличающихся на 6, называются по-английски sexy primes[20], то есть «сексуальными простыми числами». Ну и представления о сексуальности у этих математиков! Вот некоторые из победителей на конкурсе самых сексуальных пар: (5, 11), (7, 13), (11, 17), (17, 23), (23, 29), …, (191, 197)…
Вы только посмотрите, какое тут царит распутство! Партнер числа 5, число 11, состоит в связи еще и с 17, а то заигрывает с 23, а оно изменяет ему с 29. Но число 29 хранит верность 23. Сколько тут сюжетных возможностей для поистине кошмарного любовного романа!
Конечно или бесконечно количество простых чисел-близнецов, простых кузенов или сексуальных пар, никто не знает.
Примечание для математиков: сходимость обратных значений простых чисел
Рассмотрим следующий ряд, состоящий только из простых чисел-близнецов:
(1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) + … + (1/857 + 1/859)…
В 1915 г. норвежский математик Вигго Брун доказал теорему, которая стала знаменитой и носит теперь его имя. В этой теореме Брун показал, что приведенный выше ряд сходится, и его сумма равна приблизительно 1,9 (1,90216…).
Если бы этот ряд расходился, мы бы точно знали, что количество пар чисел-близнецов бесконечно. Однако тот факт, что он сходится, абсолютно ничего не говорит нам о конечности или бесконечности количества пар близнецов.
Если бы мы могли доказать, что сумма этого ряда не может быть выражена дробью – такие числа называются иррациональными, – это также решило бы задачу, так как означало бы, что существует бесконечно много пар простых чисел-близнецов (сумма конечного количества рациональных чисел всегда равна рациональному числу). Однако эта сумма рациональна, что опять же не проливает света на вопрос о бесконечности (или конечности) чисел-близнецов. Вскоре я расскажу нематематикам о рациональных и иррациональных числах.
Ряд для двоюродных простых чисел выглядит так:
(1/7 + 1/11) + (1/13 + 1/17) + (1/19 + 1/23) + …
Он сходится к сумме, приблизительно равной 1,197 (1,1970449…).
Устойчивые простые числа
Простое число называют устойчивым, если любая перестановка составляющих его цифр также дает простое число[21]. Например, простое число 199 стабильно, потому что числа 919 и 991 также являются простыми. 13 – тоже устойчивое простое число, так как оба числа 13 и 31 относятся к простым. Если запустить компьютерную программу по поиску устойчивых простых чисел, обнаружится, что после сравнительно небольшого количества чисел (последнее из которых – 991) устойчивыми, по-видимому, могут быть только простые числа, состоящие из одних лишь повторяющихся единиц. Первое из них – число 1 111 111 111 111 111 111.
И вот вам еще одна открытая проблема: существуют ли устойчивые простые числа, большие 991, но состоящие не только из единиц? Небольшая подсказка: устойчивое простое число может содержать только цифры 1, 3, 7 и 9. Вполне очевидно, что, если в числе содержится цифра 5, то одна из перестановок его цифр даст составное число.
Палиндромы
Палиндром – это текст, который читается одинаково в обе стороны. I prefer pi[22] – пример фразы-палиндрома. А есть ли палиндромы среди простых чисел? Есть. На самом деле их немало: 919, 101, 14 741 – и множество других превосходных примеров (самое большое из доказанных простых чисел-палиндромов содержит почти полмиллиона знаков). Однако все еще не ясно, конечно или бесконечно их количество. Почему бы вам не наточить карандаши, не включить компьютер и не посмотреть, не сможете ли вы выяснить чего-нибудь по этому поводу.
Гипотеза Лежандра
Французский математик XVIII в. Адриен-Мари Лежандр (1752–1833) выдвинул гипотезу, что между n² и (n + 1)² всегда есть по меньшей мере одно простое число.
Рассмотрим случай n = 2. Между 2² = 4 и 3² = 9 мы находим простые числа 5 и 7. Многие математики интуитивно верят в справедливость этой гипотезы, но, как мы уже говорили, когда имеешь дело с математикой, нельзя полагаться на одну лишь интуицию.
Выше, в разделе под названием «Царство составных чисел», мы узнали, что можно найти сплошную последовательность составных чисел (в которой не будет ни одного простого числа) произвольной длины. Один из студентов, которых я учил, решил, что это обстоятельство противоречит гипотезе Лежандра и, таким образом, доказывает ее ложность. Он ошибался. Последовательности составных чисел нельзя образовывать где попало. Как вы, должно быть, помните, последовательность из 100 чисел, которую мы рассматриваем, начиналась лишь со 100!. А 100! –
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.