В поисках бесконечности - [55]
Выбор "демона" из описанного выше квинтета осложняется парадоксом, который заключается в том, что все "неприятности", возникающие для множеств сколь угодно высокой мощности, можно смоделировать уже для счетных множеств. Получается, что за осложнения в математике несет ответственность не применение множеств слишком высокой мощности, а сама идея актуальной бесконечности.
Изгнание бесконечности.
Смелую и чрезвычайно глубокую попытку справиться с трудностями теории бесконечных множеств предпринял Давид Гильберт. Расставаться с достижениями этой теории он никак не хотел, заявляя, что никто не выгонит математиков из рая, который создал для них Георг Кантор. В своей работе "О бесконечном" Гильберт отметил, что, хотя бесконечно малые и бесконечно большие величины были удалены из математического анализа, бесконечное все же пробралось в него в виде бесконечных последовательностей, с помощью которых определяют действительные числа, а затем в виде понятия системы действительных чисел, воспринимаемой как готовая и законченная совокупность.
Вейерштрасс сводил понятия о бесконечно малых и бесконечно больших к неравенствам, связывающим конечные величины. Подобно этому Гильберт хотел изгнать из математики бесконечные множества. Он считал, что в тех случаях, когда они встречаются в математических рассуждениях, их следует понимать как оборот речи, позволяющий коротко говорить о сложных свойствах конечных множеств. По его мнению, бесконечного нет в природе и потому оно недопустимо как основа разумного мышления. В этом Гильберт усматривал замечательную гармонию между бытием и мышлением. Оперирование с бесконечным могло, по его мнению, стать надежным лишь через конечное.
Эту точку зрения называют финитарной. Для строгого ее проведения Гильберт дал четко ограниченный список допустимых символов. А для того чтобы помешать проникновению в математику каких-либо представлений о бесконечном, связанных с наглядностью, с использованием интуиции, он разработал специальную теорию формальных доказательств. В этой теории символы, выражающие логические утверждения, преобразуются по точно сформулированным правилам, подобно тому как в обычной алгебре преобразуются алгебраические выражения.
Первой целью нового исчисления было объявлено формальное доказательство непротиворечивости арифметики натуральных чисел. Более двух десятилетий Гильберт и его ученики неустанно искали пути для решения этой задачи. Хотя они добились многих успехов, окончательный успех никак не приходил.
В 1931 г. появилась статья Курта Гёделя[108], которая прозвучала как гром с ясного неба. Тончайшим образом усовершенствовав и формализовав аргументы, восходившие по сути дела к древнему парадоксу "Лжец", он доказал удивительный результат: в любой формальной системе, содержащей арифметику натуральных чисел, можно сформулировать утверждение, которое в этой системе нельзя ни доказать, ни опровергнуть. В то же время если принять существование всего бесконечного множества натуральных чисел, то это утверждение должно быть либо истинным, либо ложным, а потому "демон" Бореля, способный сделать счетное множество проверок, смог бы узнать, какой из этих двух случаев имеет место.
Открытие Гёделя было одним из крупнейших достижений логики за двухтысячелетий период ее существования — оно вскрыло пропасть между истинным и доказуемым. Правда, однажды Гёделю довелось услышать на одной из конференций по логике доклад, в котором утверждалось, что со времен Аристотеля никаких достижений в этой науке не было.
Мы не будем углубляться в круг вопросов, связанных с открытием Гёделя, и отошлем читателя к прекрасной книге Ю. И. Манина "Доказуемое и недоказуемое", вышедшей в 1979 г. в издательстве "Советское радио".
Хотя после работы Гёделя стало ясно, что намеченная Гильбертом программа невыполнима, его усилия не пропали даром — в ходе исследований возникла новая ветвь математики, касавшаяся теории доказательств и получившая название метаматематики. Это привело к невиданному углублению идей и развитию методов математической логики, что оказалось потом полезным при разработке алгоритмических языков для быстродействующих вычислительных машин.
Аксиоматизация бесконечности.
Иной путь преодоления трудностей теории бесконечных множеств выбрали математики, начавшие строить для нее систему аксиом. Одна из этих систем была предложена в 1908 г. Цермело и усовершенствована потом А. Френкелем. В аксиоматике Цермело — Френкеля описываются свойства отношения принадлежности x∈y, с помощью которого определяются отношения включения x⊂z у для множеств и понятие равенства множеств. Формулируются аксиомы, утверждающие, что два множества, содержащие одни и те же элементы, равны, а равные множества содержатся в одних и тех же множествах. Далее идут аксиомы, кодифицирующие правила составления множеств — образование пары множеств и объединения любой совокупности множеств. Кроме того, вводится аксиома о существовании множества, составленного из всех подмножеств данного множества. Наконец, к той же группе аксиом относится правило, позволяющее выделять из данного множества его подмножество, зная некоторые свойства его элементов. Эта аксиома отсекает парадоксальные множества, предложенные Кантором, Бурали-Форти и Расселом,- все они задавались свойствами своих элементов, но не были подмножествами какого-то "законного" множества.
В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.
Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.