В поисках бесконечности - [57]

Шрифт
Интервал

Приведем еще мнение по этому вопросу академика А. Н. Колмогорова:

"Выяснение вопроса о том, в какой мере и при каких условиях при изучении бесконечных множеств законно абстрагирование от процесса их образования, еще нельзя считать законченным".

Проигранное пари.

Нам осталось рассказать об одной попытке вывести теорию множеств, а с нею и всю математическую науку из затянувшегося состояния кризиса. Ее предпринял в 1907 г. Брауэр, который в значительной степени опирался на мнения, неоднократно высказывавшиеся Кронекером и Пуанкаре. По мнению Брауэра и его последователей, начиная с XVII столетия в математическом анализе и геометрии совершенно игнорировался особый характер понятия бесконечности. Поэтому они считали, что слывшие строгими методы теории действительных чисел и математического анализа, введенные в математику учеными XIX в., не только не достигали поставленных перед ними целей, но привели к созданию разработанной системы, основанной на совершенно ошибочной тенденции обращаться с бесконечностью с помощью средств, выработанных для конечных совокупностей. Тем самым отвергалась в целом вся концепция математики, шедшая от Коши, Вейерштрасса и Кантора.

Брауэр и его школа полагали, что эта концепция действительного числа и функции лишь маскирует опасности, таящиеся в понятии бесконечности, изобилует порочными кругами в рассуждениях и претендует на чрезмерную общность, что неизбежно приводит к противоречиям. Тем самым полностью отвергался прогресс в деле укрепления основ классической математики, достигнутый в XIX в., а канторовская теория множеств рассматривалась как "любопытный патологический казус" в истории математики, от которого грядущие поколения, вероятно, придут в ужас. Особенно интересно во всем этом то, что сам Брауэр имел значительные достижения в области теоретико-множественной математики.

Чтобы поставить математику на правильный, по их мнению, путь, надо было опираться на интуицию — отсюда идет и название этого направления в науке — интуиционизм. Интуиционисты отказывались рассматривать континуум как множество, состоящее из точек, поскольку считали понятие континуума более первичным, чем понятие точки. Они говорили, что континуум — это среда свободного становления точек, а не множество точек.

Придирчивой критике интуиционисты подвергли самую логику, которой пользовались все математики XIX в., да и предшествующих столетий. В частности, они категорически отвергли один из основных законов аристотелевой логики, а именно закон исключенного третьего, который состоит в том, что любое высказывание является либо истинным, либо ложным. По мнению интуиционистов, этот закон был выведен из наблюдений над конечными совокупностями предметов и имеет место лишь для утверждений, касающихся таких совокупностей. Например, чтобы убедиться в истинности высказывания: "Среди людей, проживавших на земном шаре 1 января 1983 г., не было двухсотлетних", достаточно проверить возраст каждого человека, жившего в этот день. Но такой метод проверки не годится для выяснения свойств элементов бесконечных множеств — эти элементы не построишь в ряд и не устроишь поголовную проверку документов.

Таким образом, из арсенала интуиционистов выпало столь сильное средство доказательства, как доказательство от противного. Они отвергали "чистые доказательства существования" и требовали каждый раз предъявления конкретного примера объекта, обладающего данным свойством. Иными словами, в качестве доказательства существования чего-либо они принимали лишь описание конструкции соответствующего объекта. Германн Вейль, примкнувший к движению интуиционистов, сравнивал конкретные утверждения с сокровищами, а теоремы существования — с бумагами, содержащими указания, где надо искать сокровища. Доведение теоремы существования до конструкции завершало поиск сокровища.

Иными словами, интуиционисты требовали от утверждений вида "существуют четные числа" переходить к утверждениям "число 2 — четное".

В одном из докладов об интуиционизме Брауэр привел в качестве примера утверждения, которое нельзя ни доказать, ни опровергнуть, следующее: "В десятичном разложении числа я идут десять цифр 9 подряд". В те времена было известно лишь 707 десятичных знаков для я (да и то большая часть из них оказалась неверной). Сейчас с помощью ЭВМ найдено неизмеримо больше десятичных знаков для π, так что среди них уже есть, быть может, идущие подряд 10 девяток. Но если заменить число 10 на 10>1000, то можно быть уверенным, что задача вычисления необходимого для проверки нашей гипотезы количества десятичных знаков окажется неразрешимой для любых машин, которые когда-либо будут построены. А так как теоретически решить проблему тоже невозможно, то утверждение о наличии в десятичном разложении числа n 10>1000 идущих подряд девяток заведомо непроверяемо. Правда, один из математиков, присутствовавших на докладе Брауэра, сказал, что хотя мы и не знаем, верно это утверждение или нет, но господь-бог знает. "Я не имею прямой связи с богом",- сухо возразил Брауэр.

Вся математика получила в руках интуиционистов иной вид. Например, в их анализе нет разрывных функций, а в их арифметике из равенства нулю произведения еще не следует обращение в нуль хотя бы одного из множителей. Вообще, почти каждое утверждение классической математики приходилось заменять весьма непривычно звучащим интуиционистским аналогом, а от многого надо было отказаться. "Я не считаю неприкосновенными все теоремы из обычных учебников",- заявил интуиционист Сколем.


Рекомендуем почитать
Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Знание-сила, 1997 № 04 (838)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1997 № 02 (836)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2008 № 10 (976)

Ежемесячный научно-популярный и научно-художественный журнал.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 01 (967)

Ежемесячный научно-популярный и научно-художественный журнал.


Теория адекватного питания и трофология

Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.


Естественные технологии биологических систем

Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.


Океанские дороги человечества

В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.