В поисках бесконечности - [41]

Шрифт
Интервал

Первым попытался дать строгое определение того, что такое линия, Камилл Жордан[73]. Линией он называл траекторию движущейся точки. При этом точка должна была двигаться непрерывно, не делая скачков.

Более точно определение Жордана звучало следующим образом. Для того чтобы задать положение движущейся точки, надо задать ее координаты в каждый момент движения. Так как движение продолжается какой-то конечный промежуток времени, то, не теряя общности, можно считать, что этим промежутком является [0, 1]. Иными словами, точка начинает двигаться в некоторый момент времени, принимаемый за начало отсчета, и кончает движение по истечении некоторой единицы времени (одной секунды, минуты, года и т. д.). В каждый момент времени t в течение этого промежутка задаются координаты движущейся точки. Таким образом, координаты точки зависят от момента времени t, являются его функциями. Обозначим эти функции (для случая, когда движение точки происходит в одной плоскости) через f(t) и g(t): x = f(t), y = g(t). Условие, что точка движется непрерывно, означает, что функции f(t) и g(t) непрерывны в каждой точке отрезка [0, 1]. Грубо говоря, при малом изменении t функции f(t) и g(t) должны мало изменяться.

Определение Жордана оказалось довольно удачным. Дуги всех линий, с которыми имели дело математики того времени, оказались кривыми в смысле Жордана, или, как говорят, жордановыми кривыми. Даже линии, составленные из дуг различных кривых, относятся к этому классу.

Теорема очевидна, доказательство — нет.

Жордану удалось, используя введенное им понятие кривой, уточнить смысл той самой фразы из учебников математического анализа, о которой мы уже говорили: "Пусть замкнутая линия Г ограничивает область G". Замкнутая жорданова кривая — это кривая, которая при t = 1 попадает в ту же точку, где она была при t = 0. Если при этом различным моментам времени t>1 и t>2, лежащим между 0 и 1, соответствуют разные точки кривой, то эта кривая не пересекает саму себя.

Жордан доказал следующую теорему.

Замкнутая жорданова кривая Г, не имеющая точек самопересечения, разбивает всю плоскость на две части. Две точки, принадлежащие одной и той же части, можно соединить ломаной, не пересекающей кривую Г, а точки из разных частей нельзя соединить такой ломаной, любая соединяющая их ломаная пересекает кривую Г (рис. 21).

Рис. 21


Эта теорема кажется совершенно очевидной. Однако ее доказательство потребовало очень тонких рассуждений. Даже в случае, когда линия Г является замкнутым многоугольником, доказательство остается очень сложным.

Две части, на которые замкнутая жорданова линия разбивает плоскость, называют внутренней и внешней областями, ограниченными этой линией. Таким образом, понятие области, ограниченной замкнутой линией, приобрело точный смысл.

Кривая проходит через все точки квадрата.

Когда Жордан дал свое определение кривой, то сначала казалось, что цель достигнута, получено строгое определение понятия линии, не опирающееся на наглядность. Но вскоре оказалось, что это не так. Определение Жордана охватывало не только привычные для математиков линии, но и фигуры, которые никто бы линиями не назвал. Уж со всюду колючими линиями математики как-нибудь примирились бы. Но назвать линией квадрат, на это ни у кого не хватило бы духу. А оказалось, что и квадрат, и треугольник (не периметр треугольника, а сам треугольник со всеми его внутренними точками), и круг являются линиями в смысле Жордана. Доказал это итальянский математик Пеано[74].

Мы уже рассказывали, что Кантор установил взаимно однозначное соответствие между точками отрезка и квадрата, то есть показал, что отрезок содержит ровно столько же точек, что и квадрат. Построенное им соответствие не было непрерывным. Когда точка двигалась по отрезку, соответствующая ей точка на квадрате не ползла подобно жуку, а прыгала как блоха. В самом деле, возьмем на отрезке точки

0,50000000... и 0,499999990000000...

Эти точки довольно близки друг к другу. Но соответствующие им точки на квадрате далеки друг от друга. Ведь первой из них соответствует точка (0,50000... , 0,0000...), лежащая на нижней стороне квадрата, а второй — точка (0,4999000... , 0,9999000...), лежащая у самой верхней стороны квадрата. И если мы будем увеличивать число девяток у второй точки, приближая ее к первой, то соответствующие точки квадрата и не подумают приближаться друг к другу.

Таким образом, канторово отображение отрезка на квадрат хотя и было взаимно однозначным, но не было непрерывным. Оно не давало, таким образом, жордановой кривой. Пеано удалось построить другое отображение множества точек отрезка на множество точек квадрата, при котором близким точкам на отрезке соответствовали близкие точки квадрата. Иными словами, Пеано удалось построить кривую линию (в смысле Жордана), которая прошла через все точки квадрата!

Разумеется, мы не можем нарисовать кривую Пеано, разве что, подражая художнику-абстракционисту, нарисуем черный квадрат. Но ведь на этом квадрате все равно нельзя будет понять, где начинается кривая, где она кончается, как она обходит квадрат. Поэтому последуем примеру не художника-абстракциониста, а физика Перрена и будем приближенно изображать путь точки в виде ломаной. Чем меньше будут промежутки времени между отдельными "наблюдениями", тем точнее получившаяся ломаная изобразит кривую Пеано.


Рекомендуем почитать
Тайны, догадки, прозрения

В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.


Интернет животных. Новый диалог между человеком и природой

Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».


Иван Александрович Стебут, 1833–1923

Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.


Знание-сила, 1997 № 01 (835)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1998 № 03 (849)

Ежемесячный научно-популярный научно-художественный журнал для молодежи.


Знание-сила, 1998 № 02 (848)

Ежемесячный научно-популярный и научно-художественный журнал дли молодежи.


Теория адекватного питания и трофология

Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.


Естественные технологии биологических систем

Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.


Океанские дороги человечества

В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.