В поисках бесконечности - [40]
6. Граница есть то, что является оконечностью чего-либо.
7. Фигура есть то,- что содержится внутри какой-нибудь или каких-нибудь границ.
Нет, как хотите, а это что угодно, но не строгие математические определения. Человек, не знающий, что такое точка, линия, поверхность, вряд ли почерпнет полезные для себя сведения из этих "определений", напоминающих ответ растерявшегося генерала ("Линия — это особь статья, а поверхность — особь статья"). И уж во всяком случае из этих определений не удастся узнать, что такое ковер Серпинского — линия или поверхность,; есть ли у него только длина без ширины или и длина, и ширина.
Но во времена Евклида таких сложных фигур, как ковер Серпинского, не знали, а для простых фигур определения были не слишком нужны: всякий и так мог увидеть, где на чертеже линия, а где поверхность. Впрочем, и сам Евклидг по-видимому, чувствовал, что с определениями основных понятий у него не все ладно. Во всяком случае, приведя эти определения в начале книги, он потом начисто о них забыл и ни разу на протяжении всего труда ими не воспользовался.
Нужны ли строгие определения?
На протяжении двух тысячелетий авторитет Евклида стоял совершенно незыблемо. Усомниться в каком-нибудь его положении означало окончательно и бесповоротно подорвать свою математическую репутацию. Один из величайших математиков XIX в. Карл Фридрих Гаусс, еще до Лобачевского пришедший к идеям неевклидовой геометрии, не решился опубликовать свои исследования, опасаясь, как он писал одному другу, крика беотийцев[71]. И только научный подвиг великого русского геометра Николая Ивановича Лобачевского, который опубликовал свои открытия, невзирая на насмешки не понимавших его ученых, сделал неевклидову геометрию всеобщим достоянием.
После появления трудов Н. И. Лобачевского стало ясно, что существуют две геометрии, одинаково безупречные логически, но приводящие к совершенно различным теоремам. Но если это так, то всякие ссылки на "геометрическую очевидность" полностью потеряли цену. Каждое геометрическое утверждение надо было основывать на строгих определениях, безупречных логических утверждениях. И уж во всяком случае основным геометрическим понятиям — линии, фигуре, телу — надо было дать точные определения, ничем не напоминающие определения типа "это — особь статья, а то — особь статья".
Стремление к строгим определениям характеризовало не только геометрию, но и математический анализ XIX в.
С помощью дифференциального и интегрального исчислений, созданных трудами Ньютона, Лейбница, Эйлера, Лагранжа[72] и других великих математиков XVII и XVIII вв., удалось решить самые разнообразные задачи — от расчета траектории артиллерийского снаряда до предсказания движений планет и комет. Но основные понятия, с помощью которых достигались эти замечательные результаты, были определены крайне нестрого. Основа тогдашнего математического анализа — понятие бесконечно малой величины казалось чем-то стоящим на грани бытия и небытия, чем-то вроде нуля, но не совсем нуля. И математики XVIII в. были вынуждены ободрять своих сомневающихся учеников словами: "Работайте, и вера к вам придет".
Но ведь математика не религия, строить ее на вере нельзя. А самое главное — методы, дававшие столь замечательные результаты в руках великих мастеров, стали приводить к ошибкам и парадоксам, когда ими стали пользоваться менее талантливые ученики. Мастеров оберегала от ошибок их абсолютная математическая интуиция, то подсознательное чувство, которое часто приводит к правильному ответу скорее, чем длинные логические рассуждения. Ученики же такой интуицией не обладали, и конец XVIII в. ознаменовался неслыханным скандалом в математике — наплывом формул, стоивших меньше, чем бумага, на которой они были напечатаны, и сомнительных теорем, область приложимости которых была совершенно неясна.
И, подобно детям, ломающим красивую игрушку, чтобы посмотреть, как она устроена, математики XIX в. подвергли жестокой критике все применявшиеся до того понятия, стали перестраивать математику на базе строгих определений. Ссылки на наглядность отвергались, вместо нее требовали строжайшей логики. Но требованиям логики не удовлетворяли самые простые фразы из курса математического анализа, например такие, как:
"Рассмотрим область G>1 ограниченную замкнутой линией Г".
Что такое замкнутая линия? Почему она является границей области? На сколько частей замкнутая линия разбивает плоскость и какую из этих частей рассматривают?
На все эти вопросы математики XVIII в. не давали ответа. Они просто рисовали овал и думали, то этим все сказано. А в XIX в. рисункам уже не верили. Для аналитиков вопрос "что такое линия?" тоже стал одним из самых жгучих.
Однако прошло много времени, прежде чем удалось дать на него исчерпывающий ответ.
Линия — след движущейся точки.
Для того чтобы дать строгое определение линии, надо было исходить из тех наглядных образов, которые привели к созданию этого математического понятия: длинных и тонких нитей, лучей света, длинных и узких дорог. Во всех этих случаях длина настолько больше ширины, что шириной можно пренебречь. В результате математической идеализации мы и приходим к понятию линии, не имеющей ширины.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.
Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.