В поисках бесконечности - [32]
Но самый строгий судья научных теорий — время ставит в конце концов все на свои места. Постепенно все реже и реже стали появляться работы, в которых бы использовались трансфинитные числа, исследовались мощности, отличные от счетной или континуальной. Множества с такими мощностями можно получить, рассматривая, например, все части плоскости или все функции на отрезке [0; 1]. Но дело в том, что и в теоретических исследованиях, и для решения практических проблем, нужны не любые части плоскости и не любые функции, а лишь получаемые с помощью фиксированных процессов из некоторых простейших. А множества таких "хороших" частей или функций имеют мощность континуума.
И хотя, по словам П. С. Александрова[51] и А. Н. Колмогорова[52], "огромное влияние теории множеств на развитие математики последнего полустолетия является в настоящее время общепризнанным факушм", в настоящее время это влияние идет совсем по иным каналам. В следующей главе мы расскажем о том, как изменилось лицо некоторых областей математики под влиянием теоретико-множественных концепций.
Глава 3. Удивительные функции и линии, или прогулки по математической кунсткамере
Общий фундамент.
Через всю историю развития математической науки проходят диалектические противоположность и единство двух ее частей, одна из которых изучает числа, а другая — фигуры. Натуральные числа отличаются друг от друга своими свойствами: одни из них четны, а другие нечетны, одни являются простыми, а другие — составными, одни могут быть представлены в виде суммы двух квадратов, а другие так не представляются. Это бесконечное разнообразие свойств, столь разительно меняющихся при добавлении к числу хотя бы одной единицы, придает прелесть занятиям теорией чисел. Разумеется, столь же разнообразны по своим свойствам геометрические образы — треугольники и квадраты, окружности и параболы, астроиды и кардиоиды. Но все же каждая отдельно взятая линия, например прямая или окружность, состоит из совершенно одинаковых по своим свойствам точек.
По-разному проявляется в этих частях математики и идея бесконечности. В арифметике она воплощается как бесконечность натурального ряда чисел, а в геометрии — как бесконечность пространства и, в то же время как возможность неограниченного деления фигур на части. И все же, несмотря на эту, казалось бы, непреодолимую пропасть, связанную, быть может, с какими-то глубинными свойствами человеческого разума, на протяжении всей истории математики не прекращались попытки связать друг с другом арифметику и геометрию и постараться вывести всю математическую науку из единого основания.
В эпоху, когда математика была не столько наукой, сколько ремеслом, которым занимались египетские и вавилонские писцы, единство между арифметикой и геометрией проявлялось в наивной форме — среди различных задач рассматривали и задачи на вычисление площадей фигур и объемов тел. Первая попытка теоретического объединения арифметики и геометрии была предпринята в VI в. до н. э. в школе древнегреческого математика и философа Пифагора. Одно из дошедших до нас изречений Пифагора гласит: "Все есть число". Он не только пытался "поверить алгеброй гармонию", создав одну из первых математических теорий музыкальной гаммы, но и хотел свести к натуральным числам науку об измерении геометрических величин. Поэтому для всего миросозерцания пифагорейцев оказалось катастрофой сделанное одним из них открытие несоизмеримости стороны и диагонали квадрата (в течение длительного времени они скрывали этот факт от непосвященных).
После того как стала ясной невозможность построить геометрию на основе понятия натурального числа, древнегреческие математики, наоборот, стали выражать в геометрических терминах соотношения между любыми величинами. Хотя дискретное лучше поддавалось логическому анализу, непрерывное лучше охватывалось интуицией. На языке геометрии греческие ученые выражали алгебраические закономерности (именно с тех пор в математике укоренились термины квадрат числа, куб числа, среднее геометрическое, геометрическая прогрессия и т. д.), исследовали квадратические иррациональности, решали кубические уравнения. Саму же геометрию греческие ученые строили на идее о безграничной делимости линий, фигур и тел. Они создали абстрактные понятия о точке, не имеющей размеров, о линии, имеющей лишь длину, о геометрической поверхности. И хотя эти понятия были лишь смелым теоретическим обобщением представлений о реальных точках, линиях и поверхностях, они верно служили ученым в их исследованиях и позволяли получать с их помощью правильные формулы для площадей и объемов.
После падения античной цивилизации центр математических исследований переместился в арабоязычные страны. Ученые этих стран были знакомы не только с наследием древних греков, но и с шедшей от вавилонских писцов традицией, содержавшей общие методы решения арифметических задач. Оказали на них влияние и открытия индийских математиков, которые создали десятичную систему счисления и, в отличие от древнегреческих ученых, свободно пользовались в своих работах отрицательными числами. Все это подготовило почву для создания алгебры, которая возникла в IX в. н. э. как наука о решении уравнений. Математики той эпохи, многие из которых жили в Средней Азии, не слишком задумывались над тонкостями, связанными с несоизмеримыми отрезками, и свободно использовали числа при изучении проблем геометрии.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.
Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.