В поисках бесконечности - [31]

Шрифт
Интервал

Арифметика натуральных чисел не сводится к простому счету "один, два, три..." Натуральные числа можно складывать и вычитать, умножать и возводить в степень. Эти операции тесно связаны с операциями над конечными множествами. Складывая натуральные числа m и n, мы подсчитываем число элементов в объединении двух множеств, одно из которых содержит m элементов, а другое — n элементов (при этом, конечно, нужно, чтобы объединяемые множества не имели общих элементов — иначе получится меньше элементов, чем нужно). А умножая m на n, мы подсчитываем число пар (a, b), первый элемент которых принадлежит множеству A, состоящему из m элементов, а второй — множеству B, содержащему n элементов. В математике множество таких пар называют декартовым произведением множеств A и B и обозначают A×B.

Обозначим объединение множеств A и B, не имеющих общих элементов, через A+B, а мощность множества A — через |A|. Тогда сказанное выше можно записать так:

|A + B| = |A| + |B|,

|A×B| = |A||B|.

Но левые части этих равенств имеют смысл и для бесконечных множеств. Это позволяет определить операции сложения и умножения для бесконечных мощностей. С их помощью установленные ранее утверждения о мощностях можно записать в виде формул, где через N обозначено множество натуральных чисел, а через Δ — множество точек отрезка [0; 1]:

n + |N| = |N|, |N| + |N| = |N|, |N| = |N|, |N| + |Δ| = |Δ|, |N||Δ| = |Δ|, |Δ||Δ| = |Δ|

и т. д. Например, равенство |N||N| = |N| означает, что счетное множество счетных множеств счетно, а равенство |Δ||Δ| = |Δ|,- что квадрат имеет столько же точек, что и отрезок.

Для бесконечных мощностей можно определить и операцию возведения в степень с бесконечным же показателем. Несложно доказать, что число отображений множества A в множество B равно |B|>|A|. Поэтому и для бесконечных мощностей смысл записи |B|>|A| определяется аналогичным образом. Например, равенство 2>|N| = |Δ| означает, что множество бесконечных последовательностей, составленных из нулей и единиц, имеет мощность континуума.

Далеко не все законы обычной арифметики переносятся в область арифметики натуральных чисел. Кантор говорил, что законы арифметики бесконечности коренным образом отличаются от зависимостей, царящих в области конечного.

Трансфинитные числа.

Натуральные числа применяют не только для ответа на вопрос "сколько?", но и для ответа на вопрос "какой по счету?" Иными словами, их используют не только как количественные, но и как порядковые числа. Мощности можно использовать лишь как количественные числа. Для описания порядка нужны иные понятия. Даже самое простое из бесконечных множеств — множество N натуральных чисел — можно упорядочить бесчисленной совокупностью возможностей. Кроме стандартного расположения 1, 2, 3, 4, 5, 6, ... можно поступить и так: сначала взять все нечетные числа (с их обычным порядком), а потом все четные: 1, 3, 5, ..., 2, 4, 6, ... Но при попытке перенумеровать числа в таком порядке нас постигнет неудача — все номера окажутся затраченными на нечетные числа, а на долю четных чисел ничего не останется. Поэтому кроме обычных номеров понадобятся символы новой природы. Кантор предложил при таком порядке расположения чисел нумеровать число 2 символом ω, число 4 — символ ω+1 и т. д.

Еще больше символов понадобится, если сначала выписать все числа, делящиеся на 3, потом дающие при делении на 3 остаток 1, и, наконец, числа, дающие при таком делении остаток 2:3,6, 9,..., 1,4,7,..., 2,5,8,... Здесь для нумерации числа 2 понадобится символ ω*2, число 5 будет занумеровано символом ω*2+1 и т. д. А если выписать сначала все простые числа, потом числа, разлагающиеся в произведение двух простых множителей, трех простых множителей и т. д., а в самом конце записать число 1, которое не относится ни к простым, ни к составным числам, то для обозначения последнего элемента придется применить совсем новый символ ω.

Кантор придумал еще много различных расположений множества натуральных чисел, причем все они (как и разобранные выше) обладали следующим свойством: каждая часть множества натуральных чисел имела в таком расположении наименьший элемент. Он назвал множества, элементы которых расположены в одном из этих порядков, вполне упорядоченными (термин применяется и для несчетных множеств), а символы, введенные им для нумерации элементов вполне упорядоченных множеств,- трансфинитными числами (от латинских слов trans — за и finitae — конечный). Изучая свойства трансфинитных чисел, Кантор пришел к следующей проблеме: какую мощность имеет множество всех счетных трансфинитов? Легко показать, что она несчетна, но не превосходит мощности континуума. А вот равна ли она этой мощности или меньше ее, на этот вопрос не смогли дать ответ ни сам Кантор, ни его многочисленные ученики и последователи. О современном состоянии указанной проблемы, называемой проблемой континуума, будет рассказано в главе 4.

В начале XX в. теория бесконечных множеств превратилась в модную область математической науки. Некоторые специалисты придавали очень большое значение исследованиям в этой области. Например, А. Френкель писал: "Завоевание актуальной бесконечности методами теории множеств можно рассматривать как расширение нашего научного кругозора, не меньшее по значению, чем коперникова система в астрономии и теория относительности и даже квантовая теория в физике".


Рекомендуем почитать
Дьявольский ген

Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.


Стареть, не старея. О жизненной активности и старении

Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.


Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Как стать популярным автором

Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.


Тайны, догадки, прозрения

В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.


Теория адекватного питания и трофология

Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.


Естественные технологии биологических систем

Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.


Океанские дороги человечества

В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.