В поисках бесконечности - [30]
Решение получается следующим образом. Каждую точку T квадрата ABCD можно задать двумя числами — ее координатами x и y (или попросту ее расстояниями до сторон АВ и AD). Эти числа можно записать как бесконечные десятичные дроби. Так как x и y не больше 1, то эти дроби имеют вид
x = 0, α>1α>2... ,α>n...,(1)
y = 0, β>1β>2... β>n...(2)
(для простоты мы не берем точки квадрата, лежащие на его сторонах, а берем лишь внутренние точки). Здесь α>n и β>n — десятичные знаки чисел x и y, например, если x = 0,63205... и y = 0,21357..., то α>1 = 6, α>2 = 3, α>3 = 2 и т. д., а β>1 = 2, β>2 = 1, β>3 = 3 и т. д.
Нам надо теперь найти точку Q отрезка АВ, соответствующего точке Т. Достаточно указать длину отрезка AQ. Мы выберем эту длину равной числу z, десятичные знаки которого получаются путем "перетасовывания" десятичных знаков чисел хну. Иными словами, сделаем из двух записей (1) и (2) третью, написав их десятичные знаки через один:
z = 0, α>1β>1α>2β>2α>3β>3 ... α>nβ>n ...
Например, если
x = 0,515623...
и
y = 0,734856...,
то
z = 0,571354682536...
Точка z лежит на отрезке [0, 1], и ясно, что различным точкам квадрата соответствуют при этом разные точки отрезка. Ведь если точки T и T' не совпадают, то в десятичных записях чисел x и x' или y и y' хоть один знак будет разный. Но это приведет к тому, что десятичные записи соответствующих чисел z и z' не совпадут. Несколько более подробный анализ показывает, что тогда не совпадают и сами эти точки.
Всех точек отрезка мы не получим. Например, точка z = 0,191919... должна была бы получиться из пары x = 0,111..., y = 0,999..., соответствующей точке на стороне квадрата, а такие точки мы условились не брать. Поэтому при отображении квадрата на отрезок точка z не будет образом ни одной точки квадрата.
Мы установили взаимно однозначное соответствие между точками квадрата и частью точек отрезка [0, 1]. Это показывает, что множество точек квадрата имеет не большую мощность, чем множество точек отрезка. Но его мощность и не меньше, а потому эти мощности совпадают.
Не только квадрат, но и куб имеет столько же точек, сколь и отрезок. Вообще любая геометрическая фигура, содержащая хоть одну линию, имеет столько же точек, сколько и отрезок. Такие множества называют множествами мощности континуума (от латинского continuum — непрерывный).
Существует ли множество самой большой мощности?
Пока что самой большой мощностью, которую мы знаем, является мощность множества точек на прямой, то есть мощность континуума. Ни множество точек квадрата, ни множество точек куба не имеют большей мощности. Не является ли мощность континуума самой большой? Оказывается, что нет. Более того, вообще нет множества самой большой мощности. Для любого множества A есть множество, мощность которого больше мощности A. Этим множеством является, например, множество В всех функций, заданных на множестве A и принимающих значения 0 и 1.
Покажем сначала, что мощность множества B не меньше, чем мощность множества A. Для этого каждой точке α множества A поставим в соответствие функцию f>a(x), принимающую в этой точке значение 1, а в остальных точках значение 0. Ясно, что разным точкам соответствуют разные функции. Например, если множество A состоит из трех точек 1, 2, 3, то точке 1 соответствует функция, принимающая в этой точке значение 1, а точке 2 — функция, принимающая в точке 1 значение 0. Эти функции не равны друг другу.
Итак, мощность множества B не меньше мощности множества A. Покажем теперь, что эти мощности не равны друг другу, то есть что нет взаимно однозначного соответствия между элементами множеств A и B.
В самом деле, предположим, что такое соответствие существует. Обозначим тогда функцию, соответствующую элементу a из A, через f>a(x). Напомним, что все функции f>a(x) принимают только два значения: 0 и 1.
Составим новую функцию φ(x), заданную равенством
φ(x) = 1 — f>x(x).
Таким образом, чтобы найти значение функции φ(x) в некоторой точке а из A, надо найти сначала соответствующую этой точке функцию f>a(x) и вычесть из 1 значение этой функции x = a. Ясно, что функция φ (x) также задана на множестве A и принимает значения 0 и 1. Следовательно, φ (x) является элементом множества B. Но тогда, по предположению, φ (x) соответствует некоторой точке b из A, а значит,
φ(x) = f>b (x).
Учитывая первое равенство для φ(x), получаем, что для всех x из A
1 — f>x(x) = f>b(x),
Положим в этом равенстве x = b. Мы найдем тогда, что
1 — f>b(b) = f>b(b),
и потому
Но это противоречит тому, что значения функции f>b(x) равны 0 и 1. Полученное противоречие показывает, что взаимно однозначного соответствия между множествами A и B быть не может.
Итак, для любого множества A можно построить множество B большей мощности. Поэтому множества самой большой мощности не существует. Отправляясь от самой малой из бесконечных мощностей — мощности множества натуральных чисел, мы получим сначала мощность континуума, потом мощность множества всех функций, заданных на множестве действительных чисел, и будем без конца подниматься вверх по этой головокружительной лестнице все увеличивающихся бесконечных мощностей.
Арифметика бесконечности.
«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.
Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.