В поисках бесконечности - [26]
Поступим следующим образом. Сначала перенумеруем все целые числа (это мы уже умеем делать). Номер целого числа a обозначим через a. Каждому уравнению вида a>0x>n + a>1x>n-1 + ... + a>n = 0 (где, напомним, a>0,..., a>n — целые числа) поставим в соответствие число
(через p>n+1 здесь обозначено (n-+1)-е простое число). Например, уравнению 3x>2 — 2 = 0 ставим в соответствие номер 2>43>15>6 = 150 000, потому что целое число -2 имеет номер 4, нуль — номер 1, а целое число 3 — номер 5. Теперь каждое уравнение получило свой номер, причем разным уравнениям соответствуют разные номера (каждый номер N единственным образом разлагается на простые множители, то есть единственным образом задает числа a>n, a>n+1,..., a>0; этим же числам соответствуют определенные целые числа a>n, a>n-1, ..., a>0, а тем самым и определенное уравнение a>0x>n+ ... + a>n = 0).
Неравные множества.
Мы уже выяснили, что значат слова "два множества имеют поровну элементов".
А теперь выясним, что значит "одно множество имеет больше элементов, чем второе". Для конечных множеств это тоже можно выяснить, не прибегая к счету. Вспомним пример с танцплощадкой.
Если после того, как заиграет оркестр и юноши пригласят девушек танцевать, некоторые нерасторопные юноши окажутся не у дел, то ясно, что юношей больше. Если же часть девушек будет с грустью наблюдать за своими танцующими подругами, то ясно, что больше девушек.
В этих случаях мы поступали так: устанавливали взаимно однозначное соответствие между одним множеством и частью другого множества. Если это удавалось, то отсюда следовало, что второе множество содержит больше элементов, чем первое. Пользуясь этим методом, легко установить, например, что рыб в океане меньше, чем атомов на земном шаре (хотя оба эти множества и конечны, их вряд ли возможно пересчитать). Для этого достаточно каждой рыбе поставить в соответствие один атом, входящий в состав ее тела. Тем самым будет установлено взаимно однозначное соответствие между множеством всех рыб и частью множества всех атомов на земном шаре.
К сожалению, для бесконечных множеств так просто поступить нельзя. Ведь мы уже видели, что множество может иметь столько же элементов, сколько и его часть. Поэтому только из того, что множество A имеет столько же элементов, сколько часть множества B, еще нельзя заключить, что оно имеет меньше элементов, чем все множество B.
Мы скажем, что если A можно поставить во взаимно однозначное соответствие с частью множества B, то множество B имеет не меньше элементов, чем множество A. Можно доказать, что это отношение обладает всеми свойствами неравенств:
1. каждое множество имеет не меньше элементов, чем оно само;
2. если в одном множестве не меньше элементов, чем во втором, а во втором — не меньше элементов, чем в третьем, то первое множество имеет не меньше элементов, чем третье;
3. если каждое из двух множеств имеет не меньше элементов, чем другое, то оба имеют поровну элементов (то есть между элементами этих множеств можно установить взаимно однозначное соответствие).
Первое свойство вытекает из того, что, ставя в соответствие каждому элементу множества A сам этот элемент, получаем взаимно однозначное отображение A на себя. Прозрачен и смысл второго свойства: если A можно взаимно однозначно отобразить на часть множества B, а B — на часть множества C, то существует взаимно однозначное отображение A на часть C.
А вот третье свойство при всей простоте его формулировки означает довольно сложное утверждение: если можно взаимно однозначно отобразить множество A на часть множества B, а множество B на часть множества A, то существует и взаимно однозначное отображение всего множества A на B. То, что дело обстоит таким образом, с самого начала подозревал Г. Кантор. Однако ему в течение долгого времени не удавалось найти доказательства этого утверждения. О своих затруднениях он рассказал в 1897 г. на лекциях по теории множеств для студентов университета в Галле. Через несколько дней один из слушателей, 19-летний Феликс Бернштейн[48], принес Кантору доказательство этого утверждения, основанное на той же идее, с помощью которой директор космической гостиницы помещал в нее новых постояльцев. Поэтому сейчас это утверждение называют теоремой Кантора-Бернштейна. Лишь через много лет в оставшихся после смерти немецкого математика Дедекинда бумагах нашли полученное им еще в 1887 г. доказательство той же теоремы.
Выясним теперь, в каких же случаях говорят, что мощность множества A меньше мощности множества B. Может случиться, что множество B имеет не меньше элементов, чем множество A, но эти множества не эквивалентны. Иными словами, может случиться, что есть взаимно однозначное соответствие между множеством A и частью B>1 множества B, но не существует взаимно однозначного соответствия между A и всем множеством B. Вот в этом случае мы и будем говорить, что A имеет меньше элементов, чем B.
Книга Дэвида Вуттона – история великой научной революции, результатом которой стало рождение науки в современном смысле этого слова. Новая наука – не просто передовые открытия или методы, это новое понимание того, что такое знание. В XVI веке изменился не только подход к ней – все старые научные термины приобрели иное значение. Теперь мы все говорим на языке науки, сложившемся в эпоху интеллектуальных и культурных реформ, хронологические рамки которой автор определяет очень точно. У новой цивилизации были свои мученики (Джордано Бруно и Галилей), свои герои (Кеплер и Бойль), пропагандисты (Вольтер и Дидро) и скромные ремесленники (Гильберт и Гук)
Пчелы гораздо древнее, чем люди: когда 4–5 миллионов лет назад предшественники Homo sapiens встретились с медоносными пчелами, те жили на Земле уже около 5 миллионов лет. Пчелы фигурируют в мифах и легендах Древних Египта, Рима и Греции, Индии и Скандинавии, стран Центральной Америки и Европы. От повседневной работы этих трудолюбивых опылителей зависит жизнь животных и людей. Международная организация The Earthwatch Institute официально объявила пчел самыми важными существами на планете, их вымирание будет означать конец человечества.
Все мы знаем, насколько важны для правильной диагностики анализы крови. Однако когда видим результаты, часто не понимаем, что они означают. Благодаря этой книге вы научитесь трактовать результаты анализов и делать конкретные выводы, узнаете, на что обращать внимание, как снизить риск развития заболеваний и выработать полезные привычки для поддержания здоровья всех систем организма.
Второе, переработанное и дополненное, издание книги, удостоенной в 1955 году второй премии на конкурсе на лучшую научно-художественную и научно-популярную книгу для детей. Рассказ о природе Ставрополья, ее красоте и богатстве, о возможностях изысканий и открытий в природе родного края. Книга содержит интересные загадочные рассказы, викторины, удивительные рассказы о природе. Она учит любить и охранять природу, воспитывает навыки исследования и успешного использования природных богатств края.
Книга раскрывает удивительный мир грибов, богатство их форм и разновидностей. На ее страницах — наши давние знакомцы, постоянные объекты 'тихой охоты' в лесу — шляпочные грибы, а также менее известные — грибы микроскопические. Читатель узнает о том, какой ущерб причиняют грибы сельскому хозяйству, вызывая болезни растений и животных; ознакомится с их полезными свойствами, широко используемыми в микробиологической промышленности при производстве кормовых дрожжей, аминокислот, витаминов, ферментных препаратов, антибиотиков.
В книге дается описание природы, городов и поселков Огненной Земли и Патагонии, жизни овцеводов, лесорубов, рыбаков и моряков, рассказывается об истории индейских племен, приводятся различные гипотезы и теории их происхождения, говорится о сырьевых богатствах этой далекой территории и о их использовании. [Адаптировано для AlReader].
Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.
Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.