В лабиринте чисел - [6]

Шрифт
Интервал

Но Ари сказала, что пятиконечная звезда известна людям с глубокой древности. Фигуру эту часто изображали древние вавилоняне. В Древней Греции её избрали своей эмблемой пифагорейцы — последователи знаменитого Пифагора. А Пифагор хорошо знал вавилонскую математику и позаимствовал из неё немало любопытного. В том числе, может быть, и этот звёздчатый пятиугольник.

— А что в нём любопытного? — заинтересовался Чит.

— Гармоническое сочетание частей. Недаром в древности пятиконечная звезда была символом здоровья, а здоровье — тоже гармония: пропорциональное сложение, согласованная работа всех органов. Вот и в звёздчатом пятиугольнике древние подметили замечательную пропорцию, соотношение частей, которое назвали золотым сечением. Чтобы вычертить пятиугольную звезду, надо построить пятиугольник с одинаковыми сторонами и соединить его вершины — иными словами, провести диагонали. Из этих-то диагоналей и образуется звезда. Как видишь, — сказала Ари, указывая на фронтон, — каждая диагональ делится здесь другой диагональю на две части: мéньшую и бóльшую. Так вот, короткая часть во столько раз меньше длинной, во сколько длинная меньше всей диагонали в целом. Но самое интересное, что подобное соотношение частей постоянно встречается в природе. Его можно обнаружить всюду. В строении человека, животных, растений…

— Так, может быть, древние вовсе не изобрели золотого сечения, а просто подсмотрели его у природы? — предположил Чит.

— Вполне вероятно. Сперва подсмотрели, а потом стали пользоваться своим открытием, когда хотели создать что-либо совершенное, гармоничное. Впрочем, золотое сечение — оно используется главным образом в изобразительном искусстве и архитектуре — всего лишь одно из проявлений гармонии. А вообще-то гармония — понятие широкое. Есть гармония в стихах, в танцах. Есть она и в музыке, что, кстати сказать, убедительно показал Пифагор в своём труде о гармонии.

— Не понимаю, — задумался Чит. — Ты говорила, Пифагор — математик?

— Ну и что же! Пифагорейцы, надо тебе знать, изучали четыре науки: арифметику, геометрию, астрономию и музыку.

— Какая же музыка наука? — фыркнул Чит. — Она же искусство.

— Искусство, основанное на числах, — возразила Ари. — Пифагорейцы придавали числам особое значение. Они поклонялись им как божеству. Числа, по их мнению, управляют мировым порядком. На числах основана гармония Вселенной… Ну, тут они, пожалуй, хватили через край. И всё-таки пифагорейцы были настоящими учёными. Они успешно продолжили и развили то, что почерпнули у вавилонян, и сами открыли немало нового в области чисел. О числах, которыми занимались пифагорейцы, можно говорить долго. Но я познакомлю тебя только с несколькими — хотя бы с этими четырьмя: 1, 2, 3, 4. Пифагор относился к ним с особой нежностью: ведь с их помощью он заставил одну-единственную музыкальную струну издавать звуки самой разной высоты.

— И как же он этого добился?

— Использовал отношения своих любимых чисел.

Чит не удержался — хихикнул. Он думал, отношения бывают только у людей. Но Ари сказала, что у чисел тоже, хотя и совсем другие.

Чтобы получать звуки разной высоты, Пифагор стал прижимать струну пальцем в определённом месте, то есть делить её в определённых числовых отношениях: сперва в отношении одного к двум (1 : 2), потом двух к трём (2 : 3), затем трёх к четырём (3 : 4). Как он делил струну дальше, не суть важно. Главное, что вместо целой струны у него всякий раз звучала лишь какая-то часть её. Так с помощью чисел Пифагор заложил основу науки о музыкальных созвучиях, которая тоже, между прочим, называется гармонией.



— Знаешь, Ари, всё это очень интересно… — замялся Чит. — И про Пифагора и про гармонию. Но я должен открыть тебе один секрет. Только не смейся, пожалуйста… Понимаешь, я ещё не умею делить меньшее число на большее. Два на три, три на четыре.

— Бедный ребёнок! Ты что, никогда не ел апельсинов?

Чит совсем растерялся. Апельсины он, конечно, ел, и даже больше, чем следовало. Но что общего между апельсинами и делением? Ари, однако, сказала, что это он поймёт на следующей остановке:


Дробные числа

И снова всё переменилось — прямо как в театре! Исчез дом с лепной звездой на фронтоне. Исчезли картины за стенками стеклянного коридора, да и сам коридор тоже. И вот они уже в небольшом чистеньком кафе, и на столе перед ними ваза с тремя апельсинами и пятью яблоками.

— Угощайся, — сказала Ари.

Чит не заставил себя упрашивать: схватил апельсин и стал чистить прямо руками.

Чистить апельсины руками не очень удобно, зато очень невыгодно. Сок попадает при этом куда угодно, только не в рот. В общем, очень скоро апельсин выглядел так, что пришлось его выбросить. Чит выглядел не лучше, но так как его самого выбросить нельзя было, он пошёл мыться, а когда вернулся, на тарелке лежал апельсин, очищенный самым что ни на есть аккуратнейшим образом. Ари спокойно вытирала фруктовый ножичек бумажной салфеткой.

«Всё-таки она молодчина, эта Ари», — подумал Чит и на радостях хотел было запихнуть апельсин в рот целиком. Но Ари сказала, что так недолго и подавиться, и лучше есть апельсин дольками.


Еще от автора Владимир Артурович Левшин
Три дня в Карликании

Рассказ в веселой и доступной форме детям об арифметике.


Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».


Стол находок утерянных чисел

Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.


Путевые заметки рассеянного магистра

Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.


Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.