В лабиринте чисел - [4]
Чит хотел спросить, что такое нумерация, но с ужасом обнаружил, что Ари исчезла, а вместе с ней и стеклянный муравейник.
— Ари! — отчаянно завопил он. — Ари, где ты?
— Не кричите понапрррасну, мой юный дррруг, — остановил его попугай. — Ари скоро вернётся. Да и на что вам Ари, когда к вашим услугам Ара? Старый мудрый Ара охотно ответит на ваши вопррросы. Кажется, вы собирались выяснить, что такое нумерррация? Прррошу! Нумерация, или, как говорят иначе, система счисления, — это способ записывать числа. И, смею вас уверить, за долгую историю человечества таких способов поднабралось порядочно.
— Не так уж, наверное, много, если все они умещаются в одном барабанчике, — усомнился Чит.
— Но вполне достаточно, чтобы вас ошарррашить, — с достоинством возразил Ара. — С какого способа ррразрешите начать?
Чит пожелал начать с самого удобного, и попугай сказал, что у него губа не дуррра. Но самая удобная нумерация — современная, а с ней Чит наверняка уже знаком. Поэтому старый мудрый Ара рискнёт предложить ему что-нибудь постарррше. Он покрутил свой барабанчик, оттуда повыскакивало несколько бумажек. На первой бумажке была нарисована колода с зарубками, камешки, кучки бобов и завязанные узлами верёвки.
— Это я уже видел, — сказал Чит пренебрежительно.
— Ничего, взгляните ещё разок. Так вам легче будет оценить замечательное открытие, сделанное около пяти тысяч лет назад в нескольких странах одновременно. Удивляетесь? Напрррасно. Древний Вавилон, Древний Египет, Древний Китай — всё это, по тем временам, государства высокой экономики, техники и культуры. Стало быть, там уже имели дело с большими числами, которых зарубками и камешками не запишешь. Ведь что такое зарубка? Попросту единица. А попробуйте-ка записать единицами тысячу или, того хуже, десять тысяч! И вот люди надумали группировать числа по разрядам…
— Вот так новость! — довольно невежливо перебил Чит. — У нас числа тоже делятся на разряды: единицы, десятки, сотни, тысячи… В числе 156, например, 1 сотня, 5 десятков и 6 единиц.
— Прекрррасно усвоено! — умилился Ара. — Многие древние народы действительно считали так же, как и мы: десятками. То есть каждый следующий разряд был у них больше предыдущего в 10 раз. Десятками считали египтяне. Десятками считали китайцы. Но кое-где пользовались и другими системами счисления. Шестидесятеричной, например. В такой системе каждый последующий разряд больше предыдущего в 60 раз. Те же китайцы в более отдалённые времена считали пятками. А индейцы племени майя — народ своеобррразнейшей культуры! — считали двадцатками. И каждый последующий разряд был у них больше предыдущего в 20 раз.
— Да, это вам не зарубки! — уважительно сказал Чит.
— Что и говорить, прррогресс громадный, — отозвался Ара. — И всё-таки запись больших чисел в древних нумерациях была не слишком-то удобной. Взгляните на билетик с египетской нумерацией. Записанное там число 1754 состоит из семнадцати знаков, а нам с вами достаточно четырёх. А уж как замысловато выглядели числа в Древнем Китае! Насколько я помню, у вас там изображено число 1492, но иному школьнику понадобится столько же дней, чтобы научиться такой записи. Не лучше обстояло дело и у древних римлян, хотя, на первый взгляд, их нумерация весьма экономна. Они обходились всего семью цифрами… Да, давно собираюсь спросить, хорошо ли вы знаете, что такое цифры?
— Странный вопрос, — растерялся Чит. — Цифры — это цифры…
— Великолепно! — неожиданно восхитился Ара. — Цифры — это цифры, а числа — это числа. К сожалению, некоторые люди постоянно путают эти понятия. Вечно от них слышишь: большие цифры, астрономические цифры… Они никак не желают понять, что цифры — всего лишь значки для записи чисел, так же как буквы — значки для записи слов. Между прочим, буквы — то есть письменность — появились прежде, чем цифры. Неудивительно, что люди, придумывая цифры, исходили из привычной для них формы письма. В Древнем Египте и Древнем Китае писали иероглифами — значками вроде картинок. Каждая такая картинка означала не букву, а целое понятие. И очень может быть, что именно поэтому специальные значки там были только для обозначения числовых разрядов: единиц, десятков, сотен, тысяч и так далее. У римлян иероглифов не было — они уже пользовались алфавитной, буквенной письменностью. И цифрами там служили заглавные буквы латинского алфавита — приём весьма распространённый в древности; с ним вы встретитесь в нумерациях многих восточных народов. И всё-таки римская запись больших чисел не многим лучше египетской. Число 338 631 — взгляните на билетик! — изображается там с помощью семнадцати знаков, считая маленькое латинское m — первая буква слова «mille» — «тысяча», которая ставилась после числа тысяч.
Чит хихикнул. Такое читать — глаза сломаешь!
— Не нррравится? Мне тоже! — вздохнул Ара. — Гррромоздко. Неповоррротливо. Трррудно для расчётов.
— Да уж! — согласился Чит, пытаясь разобраться, как римляне умножали столбиком 123 на 165. — Не завидую я древнеримским бухгалтерам. Не сладко им приходилось.
— Так же как счетоводам Древней Греции или Руси, — ввернул Ара. — Но, несмотря ни на что, они всё-таки считали! И прекрррасно считали. В XII веке новгородский монах Кирик написал сочинение о счёте, из которого видно, что славяне того времени отлично владели четырьмя действиями арифметики и свободно обращались не только с очень большими целыми, но и с очень малыми дробными числами.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.