В лабиринте чисел - [4]
Чит хотел спросить, что такое нумерация, но с ужасом обнаружил, что Ари исчезла, а вместе с ней и стеклянный муравейник.
— Ари! — отчаянно завопил он. — Ари, где ты?
— Не кричите понапрррасну, мой юный дррруг, — остановил его попугай. — Ари скоро вернётся. Да и на что вам Ари, когда к вашим услугам Ара? Старый мудрый Ара охотно ответит на ваши вопррросы. Кажется, вы собирались выяснить, что такое нумерррация? Прррошу! Нумерация, или, как говорят иначе, система счисления, — это способ записывать числа. И, смею вас уверить, за долгую историю человечества таких способов поднабралось порядочно.
— Не так уж, наверное, много, если все они умещаются в одном барабанчике, — усомнился Чит.
— Но вполне достаточно, чтобы вас ошарррашить, — с достоинством возразил Ара. — С какого способа ррразрешите начать?
Чит пожелал начать с самого удобного, и попугай сказал, что у него губа не дуррра. Но самая удобная нумерация — современная, а с ней Чит наверняка уже знаком. Поэтому старый мудрый Ара рискнёт предложить ему что-нибудь постарррше. Он покрутил свой барабанчик, оттуда повыскакивало несколько бумажек. На первой бумажке была нарисована колода с зарубками, камешки, кучки бобов и завязанные узлами верёвки.
— Это я уже видел, — сказал Чит пренебрежительно.
— Ничего, взгляните ещё разок. Так вам легче будет оценить замечательное открытие, сделанное около пяти тысяч лет назад в нескольких странах одновременно. Удивляетесь? Напрррасно. Древний Вавилон, Древний Египет, Древний Китай — всё это, по тем временам, государства высокой экономики, техники и культуры. Стало быть, там уже имели дело с большими числами, которых зарубками и камешками не запишешь. Ведь что такое зарубка? Попросту единица. А попробуйте-ка записать единицами тысячу или, того хуже, десять тысяч! И вот люди надумали группировать числа по разрядам…
— Вот так новость! — довольно невежливо перебил Чит. — У нас числа тоже делятся на разряды: единицы, десятки, сотни, тысячи… В числе 156, например, 1 сотня, 5 десятков и 6 единиц.
— Прекрррасно усвоено! — умилился Ара. — Многие древние народы действительно считали так же, как и мы: десятками. То есть каждый следующий разряд был у них больше предыдущего в 10 раз. Десятками считали египтяне. Десятками считали китайцы. Но кое-где пользовались и другими системами счисления. Шестидесятеричной, например. В такой системе каждый последующий разряд больше предыдущего в 60 раз. Те же китайцы в более отдалённые времена считали пятками. А индейцы племени майя — народ своеобррразнейшей культуры! — считали двадцатками. И каждый последующий разряд был у них больше предыдущего в 20 раз.
— Да, это вам не зарубки! — уважительно сказал Чит.
— Что и говорить, прррогресс громадный, — отозвался Ара. — И всё-таки запись больших чисел в древних нумерациях была не слишком-то удобной. Взгляните на билетик с египетской нумерацией. Записанное там число 1754 состоит из семнадцати знаков, а нам с вами достаточно четырёх. А уж как замысловато выглядели числа в Древнем Китае! Насколько я помню, у вас там изображено число 1492, но иному школьнику понадобится столько же дней, чтобы научиться такой записи. Не лучше обстояло дело и у древних римлян, хотя, на первый взгляд, их нумерация весьма экономна. Они обходились всего семью цифрами… Да, давно собираюсь спросить, хорошо ли вы знаете, что такое цифры?
— Странный вопрос, — растерялся Чит. — Цифры — это цифры…
— Великолепно! — неожиданно восхитился Ара. — Цифры — это цифры, а числа — это числа. К сожалению, некоторые люди постоянно путают эти понятия. Вечно от них слышишь: большие цифры, астрономические цифры… Они никак не желают понять, что цифры — всего лишь значки для записи чисел, так же как буквы — значки для записи слов. Между прочим, буквы — то есть письменность — появились прежде, чем цифры. Неудивительно, что люди, придумывая цифры, исходили из привычной для них формы письма. В Древнем Египте и Древнем Китае писали иероглифами — значками вроде картинок. Каждая такая картинка означала не букву, а целое понятие. И очень может быть, что именно поэтому специальные значки там были только для обозначения числовых разрядов: единиц, десятков, сотен, тысяч и так далее. У римлян иероглифов не было — они уже пользовались алфавитной, буквенной письменностью. И цифрами там служили заглавные буквы латинского алфавита — приём весьма распространённый в древности; с ним вы встретитесь в нумерациях многих восточных народов. И всё-таки римская запись больших чисел не многим лучше египетской. Число 338 631 — взгляните на билетик! — изображается там с помощью семнадцати знаков, считая маленькое латинское m — первая буква слова «mille» — «тысяча», которая ставилась после числа тысяч.
Чит хихикнул. Такое читать — глаза сломаешь!
— Не нррравится? Мне тоже! — вздохнул Ара. — Гррромоздко. Неповоррротливо. Трррудно для расчётов.
— Да уж! — согласился Чит, пытаясь разобраться, как римляне умножали столбиком 123 на 165. — Не завидую я древнеримским бухгалтерам. Не сладко им приходилось.
— Так же как счетоводам Древней Греции или Руси, — ввернул Ара. — Но, несмотря ни на что, они всё-таки считали! И прекрррасно считали. В XII веке новгородский монах Кирик написал сочинение о счёте, из которого видно, что славяне того времени отлично владели четырьмя действиями арифметики и свободно обращались не только с очень большими целыми, но и с очень малыми дробными числами.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.
Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.
Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.
Сборник математических задач и увлекательных головоломок, принадлежащий перу одного из классиков этого жанра Сэма Лойда, несомненно доставит большое удовольствие всем любителям занимательной математики.
Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.