Урожаи и посевы [заметки]
1
Речь идет о книге в целом — прим. перев.
2
Робер Жолэн — мой старинный друг. По моим представлениям, выйдя один на один с узаконенным сводом нравов сообщества этнологического, он поставил себя в положение («белой вороны»), в чем-то сходное с моим противостоянием «высшему свету» в математике.
3
Сильви и Катрин Шевалле — вдова и дочь Клода Шевалле, коллеги и друга, которому посвящена центральная часть «РС» (PC III, «Ключ к Инь и Ян»). И на страницах моих раздумий я неоднократно говорю о нем и о той роли, которую он сыграл в выборе моего пути.
4
Между 1945 и 1948 годами мы с матерью жили в маленькой деревушке Мераргю (неподалеку от Вераргю), затерянной среди виноградников, в десяти километрах от Монпелье. (Мой отец погиб в Освенциме в 1942 г.) Чтобы сводить концы с концами, я участвовал каждый год в сборе винограда, а после из того, что было забыто на лозе, делал вино, которое и продавал кое-как (кажется, в нарушение действовавших тогда законов). Кроме того, рядом был сад, который, хоть никто за ним и не ухаживал, в изобилии поставлял нам фиги, шпинат и даже (под конец) помидоры, посаженные любезным соседом на острове в море великолепных маков. То была красивая жизнь, но не без ям на дороге — когда нужно было заменить оправу очков или ботинки, изношенные до нитки. К счастью, моя мать, ослабленная и больная вследствие долгого пребывания в лагерях, имела право на бесплатную медицинскую помощь. У нас ни за что не достало бы денег на лечение…
5
Я поместил короткий рассказ об этом переходном периоде, довольно трудном, в первой части «РС», в разделе «Желанный иностранец».
6
Это несколько неточная формулировка. Я не мог «научиться быть один» по той простой причине, что я никогда и не разучивался, в детстве эта способность была со мной — с рождения, как и со всяким другим ребенком. Но три года уединенного труда, когда я смог дать самому себе оценку, исходя из моих собственных внутренних критериев, подтвердили и обновили во мне, по отношению к математическим занятиям на этот раз, основу спокойной уверенности в себе, не подчиненной законодательству общепринятых соглашений или велениям моды. Я еще коснусь этого в примечании «Корни и одиночество» (PC IV, n° 171/3, в особенности стр. 1080).
7
Так, возможные исправления ошибок (фактических, во взгляде на вещи и пр.) не вводятся ретушевкой первого наброска, а появляются в виде сносок внизу страницы или во время позднейшего возвращения к тому же вопросу.
8
Для уточнений по поводу «резкого вызова» см. «Письмо», особенно разделы 3–8.
9
Ожидаемое примечание по завершении вылилось в часть IV «РС», состоящую из 70 примечаний, растянувшуюся на добрые четыреста страниц.
10
В равной мере и здесь, и там в дополнение к математическим обзорам уже завершенного мной труда содержатся новые математические разработки. Из них самая длинная — «Пять фото (кристаллы и D-модули)» в «РС» IV, примечание n° 171 (ix).
11
Главная тому причина мне видится в наличии определенного благоприятного климата, окружавшего меня в детстве, начиная с пятилетнего возраста. См. по этому поводу примечание «Невинность» (PC III, n° 107).
12
Этот образ-архетип строящегося дома в первый раз всплыл на поверхность и нашел словесное выражение в примечании «Инь-слуга и новые хозяева» (PC III, n° 135).
13
Я рассказываю об этих шагах в разделе «Долгожданный иностранец» (PC I, § 9).
14
Это не помешало мне (вслед за Картаном и Серром) войти в число тех, кто активнейшим образом применял, пропагандировал и способствовал развитию одного из важнейших новаторских понятий, введенных Лерэ, то есть понятия пучка, занявшего место в ряду главных инструментов для моего труда, посвященного геометрии. Оно же снабдило меня ключом к расширению понятия пространства (топологического) до понятия топоса, о котором пойдет разговор ниже.
15
Крадучись в обход прямого смысла, тайком, я соединил в этом месте два мужественно звучащих наименования («строитель» и «первопроходец»), которые отражают, однако, весьма различные аспекты импульса к открытию — более тонкие по своей природе, чем эти два слова способны передать. Нам еще предстоит с этим столкнуться во время прогулки-раздумья, на этапе «Открытие Матери, или два склона» (§ 17).
16
Тем самым он невольно устанавливает в этой древней (если не для него самого, то, по крайней мере, для менее подвижных его сородичей) Вселенной новые границы, новые круги, конечно, просторнее прежних, но столь же невидимые, столь же властные, как и те, которые он, восстав, смог лишь заменить.
17
Именно так обстояли дела в математике в период с 1948 по 1969 г., чему я был непосредственным свидетелем, когда сам входил в математическое сообщество. После моего ухода в 1970 г. наблюдалось что-то похожее на широкомасштабное сопротивление, вроде «всеобщего презрения», по отношению к «идеям» вообще, и особенно к важнейшим новаторским идеям, мною предложенным.
18
Большинство моих старших коллег (о чем говорится, например, в разделе «Желанный долг», Введение, § 10) относятся к этому промежуточному типу. В особенности мне приходят на ум Анри Картан, Клод Шевалле, Андре Вейль, Жан-Пьер Серр, Лоран Шварц. Впрочем, они все, кроме, быть может, Вейля, сочувственным взглядом, «не тая ни тревоги, ни укора», провожали меня в мои уединенные походы за приключениями.
19
Конечно, это справедливо не для одного только «нашего искусства», но и (как мне кажется) для всякого труда, связанного с открытием, по крайней мере, в русле умственного познания.
20
Всякая точка зрения приводит к развитию языка, на котором она может быть выражена, именно ей присущего. Иметь несколько «глаз», или «точек зрения», для изучения ситуации означает также (по крайней мере в математике) располагать несколькими различными языками, чтобы подойти к ней со всех сторон.
21
Образ сомнамбулы был мне навеян названием замечательной книги Кестлера «Сомнамбулы» (изд. Кальман Леви), представляющей собой «Очерк истории концепций Вселенной» (со времен зарождения научной мысли до эпохи Ньютона). Одна из особенностей этой истории поразила Кестлера, а именно — до какой степени иногда путь от одной точки на маршруте познания мира до другой, как будто бы (по логике вещей и в перспективе многих лет) к ней совсем близкой, претерпевает немыслимые повороты, словно нарочно бросая вызов здравому смыслу; и как при этом, пройдя тысячу поворотов и, кажется, заблудившись безвозвратно, с «уверенностью сомнамбулы» люди, которые отправлялись на поиски «ключей» к устройству Вселенной, натыкались, как бы вопреки себе и часто не отдавая себе в том отчета, на другие «ключи», существования которых они решительно не предвидели, и которые, однако, оказываются «подходящими».
Судя по тому, что я мог наблюдать вокруг себя, в математике эти головокружительные повороты на пути к открытию случались и с искателями большого масштаба, но никак не со всеми. Это могло быть связано с тем, что два или три столетия тому назад исследования в естественных науках, и особенно в математике, оказались свободными от догм, религиозных или метафизических, присущих данной эпохе, которые всегда служили мощными тормозами развития (будь оно на пользу или во вред) «научного» понимания Вселенной. Верно, впрочем, и то, что для того, чтобы некоторые идеи и понятия в математике, наиболее фундаментальные и очевидные (как, например, понятие перемещения, группы, числа нуль, действия с буквенными выражениями, понятие координат точки в пространстве, множества или топологической «формы», не говоря уже об отрицательных и комплексных числах), появились на свет, потребовались тысячелетия. Это столь же убедительные признаки наличия давнего «блока», глубоко укоренившегося в психике препятствием к восприятию новых идей, даже когда они по-детски просты и просятся в мир настойчиво, с силой очевидности — на протяжении поколений, даже тысячелетий…
Возвращаясь к моему собственному труду, должен сказать, что, как мне кажется, «срывы» (они у меня случались, пожалуй, чаще, чем у большинства моих коллег) в нем ограничивались исключительно отдельными деталями, и обычно я сам же вскорости их исправлял. То были попросту «пустячные происшествия» чисто локальной природы, без серьезных последствий для справедливости основных догадок по поводу исследуемой ситуации. Напротив, на уровне идей и глобальных руководящих предчувствий мой труд, представляется мне, свободен от всяческого рода «промахов», как бы невероятно это ни звучало. Эта уверенность, неизменно и безошибочно открывавшая мне всякий раз если не конечные результаты предприятия (они как раз чаще всего оставались скрытыми от взгляда), то по меньшей мере направления наиболее плодотворные, а те уже вызывались вести меня непосредственно к вещам основным — эта самая уверенность и пробудила в моей памяти образ Кестлеровской «сомнамбулы».
22
Начиная с шестидесятых годов, часть из них написана совместно с коллегами (прежде всего Ж. Дьедонне) и учениками.
23
Важнейшим из этих понятий сделан обзор в «Тематическом очерке» и в сопровождающем его «Историческом комментарии», которые будут включены в четвертый том «Раздумий». Некоторые из названий были мне предложены друзьями и учениками, как, например, термин «гладкий морфизм» (Ж. Дьедонне) или набор понятий «ситус, стэк, джерб, связка», получивших развитие в диссертации Жана Жиро.
24
К тому моменту, как я покинул математическую сцену в 1970 г., общая масса моих публикаций (многие из которых написаны в соавторстве), имеющих центральной темой схемы, должно быть, составляла около десяти тысяч страниц. Это, однако, лишь скромная часть программы широкого масштаба, относящейся к схемам, которую я видел перед собой. Стоило мне удалиться со сцены — и эта программа была заброшена на неопределенное время, как нечто не сулящее перспектив… а ведь (за очень редкими исключениями) все, что я когда-либо заметил и затем развивал для передачи в общее распоряжение, благополучно вошло в копилку «хорошо известных», активно используемых в науке вещей.
Уже та часть моей программы, касающейся теории схем, ее дальнейшего развития и ее ответвлений, которую я завершил на момент ухода, представляет собой наиболее объемный труд над основами, когда-либо осуществленный в истории математики, и заведомо один из самых обширных в истории Наук.
25
Вот, для заинтересованного читателя-математика, список этих двенадцати главных идей, или «ключевых тем» моего труда (в хронологическом порядке их появления):
1. Топологические тензорные произведения и ядерные пространства.
2. «Непрерывная» и «дискретная» двойственность (производные категории, «шесть операций»).
3. «Йога» Римана-Роха-Гротендика (К-теория, связь с теорией пересечений).
4. Схемы.
5. Топосы.
6. Этальные и l-адические когомологии.
7. Мотивы и мотивная группа Галуа (×-категории Гротендика).
8. Кристаллы и кристальные когомологии, йога «коэффициентов де Рама», «коэффициентов Ходжа».
9. «Топологическая алгебра»: ∞-стэки, derivateurs; когомологический формализм топосов как основа для новой гомотопической алгебры.
10. Ручная топология.
11. Йога анабелевой алгебраической геометрии, теория Галуа-Тейхмюллера.
12. «Теоретико-схемная», или «арифметическая» точка зрения на правильные многогранники и правильные конфигурации произвольного рода.
Если не считать первой из этих тем, важная часть которой вошла в мою диссертацию (1953), и которая получила развитие в период, когда я занимался функциональным анализом (с 1950 по 1955 г.), все одиннадцать остальных явились на свет в период моих занятий геометрией, начиная с 1955 г.
26
Из этих тем наиболее обширной по своей значимости мне представляется тема топосов, которая осуществляет идею синтеза алгебраической геометрии, топологии и арифметики. Самой объемной по числу приложений, получивших развитие уже на настоящий момент, оказалась теория схем. (См. по этому поводу сноску на предыдущей странице.) Именно она в полном смысле слова составила среду обитания еще восьми из рассматриваемых тем (то есть всех остальных, кроме первой, пятой и десятой) и в то же время предоставила ключевое понятие для полнейшего обновления алгебраической геометрии и ее языка.
Напротив, первая и последняя из двенадцати тем кажутся мне по своему масштабу скромнее прочих. И все же, если говорить о последней, представившей новый взгляд на весьма древнюю проблему правильных многогранников и конфигураций — сомневаюсь, что математику, который ей одной посвятил бы себя душой и телом, хватило бы жизни на то, чтобы ее исчерпать. Что касается первой из всех этих тем, топологических тензорных произведений и ядерных пространств, то она скорее играет роль нового инструмента, готового к использованию, чем основы для последующей разработки. При всем том, однако, до меня еще долетают — вплоть до этих последних лет — отрывочные отклики более или менее недавних работ, отвечающих (двадцать или тридцать лет спустя) на некоторые из вопросов, которые я тогда оставил неразрешенными.
Наиболее глубокая (на мой взгляд) среди этих двенадцати — тема мотивов, то есть та, что теснейшим образом связала анабелеву алгебраическую геометрию с йогой Галуа-Тейхмюллера.
С точки зрения технических возможностей инструментов, совершенно готовых и отшлифованных моими стараниями, и повседневного применения на различных «передовых участках» исследования в течение двух последних десятилетий, схемы и этальные и l-адические когомологии представляются мне среди прочих наиболее значительными. Я думаю, что уже сейчас у достаточно осведомленного математика не может быть никаких сомнений в том, что инструмент теоретико-схемный, как и вышедший из него l-адический, вошли в число серьезных достижений века, исполнивших свежими силами и обновивших нашу науку в ходе последних поколений.
27
Единственный «полуофициальный» текст, в котором эти три темы мало-мальски обрисованы — «Набросок программы», составленный в январе 1984 г. по случаю запроса из CNRS (Сentre national de la recherche scientifique — Национальный центр научных исследований — прим. перев.). Этот текст (о нем говорится также в третьем параграфе «Введения», «Компас и багаж») будет в основе своей включен в четвертый том «Раздумий».
28
Cхоронив втихомолку, чуть не на другой день после моего ухода, этих трех сирот, двух из них потом вырыли с оркестром, позабыв упомянуть труженика-родителя: одну в 1981 г., и другую (ввиду безусловного успеха предыдущей операции) на год позже.
29
Оговорки эти относятся прежде всего к йоге дуальности Гротендика (производные категории и шесть операций) и топосов. О них (и еще о многом другом) речь пойдет более подробно в частях II и IV «РС» («Похороны» (1) и (3)).
30
Год 1957 г. — тот самый, когда мне удалось настичь по горячему следу тему «Римана-Роха» (версия Гротендика), которая сразу же принесла мне «всеобщую известность». Это также год смерти моей матери, то есть резко выделенный в моей жизни — и один из наиболее интенсивно творческих, причем не на одной только математической ниве. Двенадцать лет уже шло тому, как все мои силы были вложены в математику. И я вдруг ясно почувствовал, что мои занятия сделали почти «полный оборот» по кругу, так что на часах, пожалуй, время их оставить и взяться за что-то другое. Очевидно, то была потребность духовного обновления, впервые тогда ко мне подступившая. Я собрался было стать писателем, и на многие месяцы прекратил всякую деятельность, связанную с математикой. Под конец я решил, что запишу черным по белому хотя бы те математические работы, какие у меня уже были начаты; без сомнения, дело нескольких месяцев, года самое большее…
Бесспорно, однако, что к безвозвратному скачку на иные круги я тогда еще готов не был. Всякий раз, как я ни пытался взяться снова за математический труд, выходило так, что это он меня захватывал, да накрепко. Еще на двенадцать лет, не выпуская!
Год, последовавший за этой паузой (1958), был, наверное, самым плодотворным для меня как математика. Это год появления двух центральных тем новой геометрии: бурного старта теории схем (предмет моего доклада на международном математическом конгрессе в Эдинбурге летом того же года) и возникновения понятия ситуса, то есть предварительной, технической версии важнейшего понятия топоса. Сейчас, в перспективе почти что тридцати лет, я могу утверждать, что то был воистину год рождения нового геометрического видения, последовавшего за вступлением в силу двух главных инструментов этой геометрии: схем (которые являют собой метаморфозу старого понятия «алгебраического многообразия») и топоса (представляющего результат преображения — еще более глубокого, чем в случае схем — понятия пространства).
31
Мне в первый раз пришло в голову этому видению дать название в «Раздумьи» от 4 декабря 1984 г. (сноска n° 136/1 к примечанию «Инь-слуга (2), или великодушие» — PC III, стр. 637).
32
То, что этот образ должен оставаться расплывчатым, нисколько не мешает ему быть верным истинной сути объекта, о котором идет речь (в данном случае моего труда). Наоборот, образ ясный и отчетливый может оказаться сильно искаженным, и к тому же содержать в себе лишь побочные, второстепенные черты объекта, совершенно опуская главные. И потом, если в тебе «найдет зацепку» то, что я скажу о своем труде (а тем самым, разумеется, и кое-что от того образа, который действительно «проносится» предо мной), ты сможешь похвастаться куда лучшим пониманием его сути, чем, пожалуй, любой из моих ученых коллег.
33
Здесь имеются в виду «натуральные числа» 0, 1, 2, 3 и т. д., или (в крайнем случае) числа (дробные), которые нужны как подручные для выполнения элементарных действий. Они не претендуют на то, чтобы, подобно «вещественным числам», измерять величины, способные к непрерывному изменению — такие, как расстояние между двумя точками, движущимися вдоль прямой, на плоскости или в пространстве.
34
Я использую сочетание слов «захлестывающий, сверх всякой меры», чтобы кое-как передать выражение «uberwaltigend» из немецкого и его английский эквивалент «overwhelming». В предыдущем предложении выражение (неадекватное) «захватывающее ощущение» следует воспринимать со следующей окраской: то, что бывает, когда мы сталкиваемся с невероятным великолепием, величием и красотой вне рамок обыденного, так, что чувства лавиной обрушиваются на нас — и тогда любая робкая попытка описать, что творится с нашими душами, заранее обречена на неудачу.
35
Я знал об этой «мечте Кронекера» лишь понаслышке до тех пор, пока кто-то (вполне возможно, что это был Джон Тэйт) не сказал мне, что я нахожусь в процессе ее осуществления. Образование, которое я получал от старших коллег, ссылки на историю включало редко. Восполнялось это не чтением современных или сколько-нибудь древних авторов, но в первую очередь общением с другими математиками, непосредственным или по переписке, начатой старшими. Основным, даже может быть, единственным, внешним источником вдохновения для внезапного и бурного старта теории схем в 1958 г. была статья Серра, хорошо известная под сокращением АКП («Алгебраические когерентные пучки»), которая вышла в свет на несколько лет раньше. В остальном же все дальнейшее развитие теории питалось энергией, истекавшей по сути от нее самой. Поток этот возобновлялся с годами, хотя бы только в соответствии с требованиями простоты и внутренней согласованности, в попытке рассмотреть в новом контексте все «хорошо известное» в алгебраической геометрии (и усвоенное мной по мере того, как преобразовывалось, проходя через мои руки) — и то еще, что это «известное» дало мне возможность предугадать.
36
По правде говоря, традиционно именно «непрерывный» аспект находился в центре внимания геометрии, в то время как свойства «дискретной природы», в частности численные и комбинаторные, было принято обходить молчанием, или кой-как, мельком учитывать. И воистину с восхищением десять лет назад я обнаружил богатства комбинаторики икосаэдра, а ведь эта тема совсем не затронута (может быть, даже не замечена) Клейном в его классической книге об икосаэдре. Другой поразительный признак той же (двухтысячелетней) небрежности геометров, которые стояли лицом к лицу с дискретными структурами, самопроизвольно проникшими в геометрию, мне видится в том, что понятие группы (симметрии, в частности) не появлялось вплоть до конца прошлого века — и поначалу оно было введено (Эваристом Галуа) в контексте, который тогда не почитался частью геометрических владений. Правда, что и в наши дни есть немало алгебраистов, все еще не разобравших, что теория Галуа — видение по сути своей геометрическое, которому удалось обновить наше понимание явлений, именуемых «арифметическими»…
37
Андрэ Вейль, французский математик, эмигрировавший в Соединенные Штаты, один из «членов-основателей» группы Бурбаки, о которой немало будет сказано в первой части «РС» (как, впрочем, и о самом Вейле).
38
(Предназначается для читателя-математика.) Речь идет о «конструкциях и рассуждениях», связанных с когомологической теорией комплексных или гладких многообразий, в частности, включающих формулу неподвижных точек Лефшеца и теорию Ходжа.
39
Речь идет о четырех «средних» темах (5–8), то есть темах топоса, мотивов, этальных и l-адических когомологий и (в меньшей степени) кристаллов. Я их извлек на свет одну за другой между 1958 и 1966 годами.
40
(Предназначается для читателя-математика.) Основным вкладом Зарисского в этом направлении мне представляется введение «топологии Зарисского» (ставшей позднее важным инструментом для Серра в АКП), его «принцип связности» и то, что он назвал «теорией голоморфных функций» — сделавшейся в его руках теорией формальных схем; также «теоремы сравнения» между формальным и алгебраическим (наряду с основополагающей статьей ГАГА Серра, вторым источником вдохновения). Что же до вклада Серра, о котором я упомянул в тексте, он, безусловно, заключается прежде всего во введении в абстрактную алгебраическую геометрию точки зрения пучков (предложенной Жаном Лерэ десятью годами раньше в совершенно ином контексте), в другой его важнейшей работе АКП («Алгебраические когерентные пучки»), о которой здесь уже говорилось.
В свете этой «поименной переклички»: если бы мне предложили назвать ближайших «прародителей» нового геометрического видения, то имена Оскара Зарисского, Андрэ Вейля, Жана Лерэ и Жан-Пьера Серра я бы произнес, не задумываясь. Среди них Серру принадлежит особая роль, так как главным образом через его посредство я ознакомился не только с его собственными идеями, но также с идеями Зарисского, Вейля и Лерэ, немало значившими для зарождения и развития новой геометрии.
41
О бурном зарождении новой геометрии (1958 г.) идет речь в сноске n° 31. Понятие ситуса, или «топологии Гротендика» (предварительная версия понятия топоса), появляется по горячим следам понятия схемы. Оно, в свою очередь, предоставляет в распоряжение математиков новый язык «локализации» или «спуска», который применяется на каждом шагу при развитии темы и инструмента теоретико-схемных. Понятие топоса, более глубокое и геометрическое, остается невыраженным в явном виде в течение нескольких последующих лет; оно выбирается на свет главным образом начиная с 1963 г. с развитием этальных когомологии и понемногу заставляет признать себя первым из основополагающих.
42
Удобно также включить в этот ряд и случай р = ∞, соответствующий алгебраическим многообразиям «в характеристике нуль».
43
Отчет об этом «бурном старте» теории схем был предметом моего доклада на Международном Конгрессе Математиков в Эдинбурге в 1958 г. Текст этого доклада мне представляется одним из лучших введений в теорию схем, способным (быть может) увлечь читателя-геометра идеей ознакомиться с внушительным трактатом (позднейшим) «Начала Алгебраической Геометрии», в котором тщательным образом (не опуская ни единой технической подробности) излагаются новые основы и новые методы алгебраической геометрии.
44
Говоря о понятии «предела», я подразумеваю здесь в первую очередь «предельный переход», скорее чем понятие «границы» (которое ближе нематематику).
45
По правде говоря, инварианты, введенные Бетти, были гомологиями. Когомологии, более или менее эквивалентные им, «дуальные» понятия, были введены гораздо позднее. Этот аспект обрел превосходство над начальным, «гомологическим», главным образом, бесспорно, вслед за введением Жаном Лерэ точки зрения, основанной на понятии пучка, о чем говорится ниже. В техническом отношении можно сказать, что огромная часть моего труда в области геометрии состояла в извлечении на свет и развитии в тех или иных пределах недостающих когомологических теорий для пространств и многообразий всех видов, прежде всего «алгебраических многообразий» и схем. Мне привелось, прокладывая дорогу, истолковать традиционные гомологические инварианты в терминах когомологических, и тем самым представить их в совершенно новом свете.
Есть много других «топологических инвариантов», введенных топологами, чтобы подступиться к того или иного рода свойствам топологических пространств. Если не говорить о «размерности» пространства и (ко)гомологических инвариантах, первые из числа прочих инвариантов — «гомотопические группы». Я ввел новый инвариант в 1957 г.: группу К{Х) (так называемую «группу Гротендика»), которой сразу же посчастливилось получить признание и чья значимость (как для топологии, так и в арифметике) не устает подтверждаться снова и снова.
Множество новых инвариантов, по своей природе изощренней тех, что в наше время известны и используются, но по моему ощущению совершенно фундаментальных, намечено в моей программе по «ручной топологии» (ее краткий обзор включен в «Набросок Программы», который войдет в четвертый том «Раздумий»). Эта программа основывается на понятии «ручной теории», или «ручного пространства», которое представляет собой, в чем-то как и понятие топоса, (вторую) «метаморфозу понятия пространства». Оно намного прозрачнее (как мне кажется) и не такое глубокое, как это последнее. Я, однако, предвижу, что его воздействие на топологию «собственно говоря» определенно должно быть еще значительней, и что благодаря ему «ремесло» геометра-тополога изменится целиком, сверху донизу — путем глубокого преобразования концептуального контекста, в котором он работает. (Как это уже случилось с алгебраической геометрией после введения точки зрения теоретико-схемной.) Я послал свой «Набросок» нескольким старым друзьям и известным топологам, но непохоже, чтобы содержание их сколько-нибудь заинтересовало …
46
Парадоксально, у Вейля был прочный «барьер», очевидно, инстинктивный, против когомологического формализма — при том, что именно его прославленные гипотезы в значительной мере послужили основой для развития важнейших когомологических теорий в алгебраической геометрии, начиная с 1955 г. (первоначальный толчок процессу был дан Серром, с его основополагающей статьей АКП, уже упоминавшейся в одной из предыдущих сносок).
Мне представляется, что этот «барьер» у Вейля был частью общей неприязни ко всякого рода «нагромождениям», ко всему, что приходилось сродни формализму (и не могло быть изложенным на нескольких страницах), или «конструкции», сколько-нибудь запутанной. В нем определенно не было ничего от «строителя», и очевидно, что именно против воли он был принужден в течение тридцатых-сороковых годов заниматься развитием первоначальных основ «абстрактной» алгебраической геометрии, которые (ввиду степени его расположенности к этому труду) явились воистину «Прокрустовым ложем» для потребителя.
Я не знаю, желал ли он, чтобы я пошел дальше и вложил свои силы в построение больших зданий, которые позволили бы мечтам Кронекера и его собственным воплотиться в языке и инструментах изощренных и эффективных. Он ни словом не откомментировал ни тот труд, в который видел меня погруженным, ни уже готовые части работы. Так же не получил я и отклика на «РС», экземпляр которых послал ему больше чем три месяца назад, с теплой дарственной надписью, сделанной от руки.
47
(Предназначено для математика.) По правде говоря, здесь речь идет о пучках множеств, а не о пучках абелевых групп, введенных Лерэ как самые общие коэффициенты «теории когомологии». Думаю, что я первым начал систематически работать с пучками множеств (начиная с 1955 г., в моей статье «Общая теория расслоенных пространств со структурным пучком», изданной в Канзасском Университете).
48
(Предназначено для математика.) Строго говоря, это справедливо лишь для пространств, называемых «трезвыми». Они, однако же, составляют почти все типы пространств, с какими обыкновенно сталкиваешься — в частности, таковы все «отделимые» пространства, излюбленные аналитиками.
49
«Зеркало», о котором речь, таково, что если поместить перед ним пространство, оно даст (как в «Алисе в стране чудес») в качестве «отражения» соответствующую категорию, рассматриваемую как что-то вроде «двойника» пространства, «другой стороны зеркала»…
50
(Предназначено для математика.) Здесь речь идет прежде всего о свойствах, которые я ввел в теорию категорий под названием «свойства точности» (одновременно с современным категорным понятием общих индуктивных и проективных «пределов»). См. русский перевод «О некоторых вопросах гомологической алгебры», Библиотека сборника «Математика«, Москва, 1961.
51
Так, можно построить топос весьма «объемный», в котором будет только одна «точка» — или вовсе ни одной!
52
Название «топос» было выбрано (в связи с понятием «топология» или «топологический»), чтобы наводить на мысль о том, что речь идет об объекте, в полном смысле слова относящемся к области топологической интуиции. По обилию мысленных образов, которые слово «топос» вызывает, его можно рассматривать как более или менее эквивалент термину «пространство» (топологическое), просто сильнее подчеркивая «топологическую» специфику понятия. (Так, есть «векторные пространства», но не «векторные топосы», вплоть до нового распоряжения!) Необходимо сохранить оба выражения, каждое со своей спецификой.
53
Среди них есть, в частности, конструкции известных «топологических инвариантов», переведенные на новый язык инвариантами когомологическими. Для этих последних я сделал все, что требовалось, — в статье, уже упоминавшейся («О некоторых вопросах гомологической алгебры», 1961) — чтобы придать им смысл для любого топоса.
54
(Предназначается для читателя-математика.) Когда я говорю «довести до конца эту скромную идею», то имею в виду идею этальных когомологии, как подход к гипотезам Вейля. Именно под этим лозунгом произошло открытие мною понятия ситуса в 1958 г. и дальнейшее развитие его (или очень близкого к нему понятия топоса) и формализма этальных когомологии под моим руководством (с помощью нескольких сотрудников, о которых я скажу в свое время) между 1962 и 1966 годами.
Говоря о «смелости» и «вере», я веду речь о качествах «нетехнической» природы, мне здесь представляющихся весьма существенными. Могу добавить к их перечню, из другой области, то, что я бы назвал «когомологическим чутьем», то есть интуицией особого рода, выработавшейся во мне при построении когомологических теорий. Я думал передать ее своим ученикам, занимающимся когомологиями. В перспективе шестнадцати лет, считая от моего ухода с математической сцены, констатирую, что ни в одном из них она не сохранилась.
55
(Предназначено для математика.) Гипотезы Вейля находятся в зависимости от предположений арифметической природы: именно, рассматриваемые в них многообразия должны быть определены над конечным полем. С точки зрения когомологического формализма это приводит к тому, что особое место получает эндоморфизм Фробениуса, соответствующий данной ситуации. При моем подходе ключевые свойства (типа «обобщенной теоремы об индексе») связаны с произвольными алгебраическими соответствиями и не требуют никаких ограничений арифметической природы над основным полем, предварительно заданным.
56
При этом после моего ухода в 1970 г. весьма четко наметилось движение реакции, которое вылилось в ситуацию относительного застоя, о которой я не раз упомяну при случае на страницах «РС».
57
«Обыкновенные» значит здесь: «определенные над полем комплексных чисел». Теория Ходжа (называемая также гармоническими интегралами) была мощнейшей из известных когомологических теорий в контексте комплексных алгебраических многообразий.
58
Эта тема — наиболее глубокая по крайней мере за весь «открытый» период моей математической деятельности, между 1950 и 1969 годами, то есть вплоть до того момента, как я оставил математическую сцену. Я считаю тему анабелевой алгебраической геометрии и теорию Галуа-Тейхмюллера, получившие развитие, начиная с 1977 г., сравнимыми с ней по значению.
59
(Предназначается для читателя, занимающегося алгебраической геометрией.) В свое время будет приведена формулировка этих гипотез. Для более подробных комментариев см. «Обзор построек» (PC IV, примечание n° 178, стр. 1215–1216) и сноска на стр. 769 в разделе «Убеждение и знание» (PC III, примечание n° 162).
60
(Предназначается для читателя-математика.) Эти теории соответствуют, по порядку, когомологиям Бетти (определенным с трансцендентной точки зрения, с помощью вложения основного поля в поле комплексных чисел), когомологиям Ходжа (определенным Серром) и когомологиям де Рама (определенным мной); две последние относятся еще к пятидесятым годам (а теория Бетти — к предыдущему столетию).
61
(Предназначается для читателя-математика.) Например, если f — эндоморфизм алгебраического многообразия X, индуцирующий эндоморфизм пространства когомологии Н>i(Х), «характеристический многочлен» последнего должен быть многочленом с целыми коэффициентами, не зависящими от выбора конкретной когомологической теории (например, l-адической для различных l). То же верно для общих алгебраических соответствий, если X собственное и гладкое. Печальная истина (дающая представление о плачевном состоянии заброшенности когомологической теории алгебраических многообразий в характеристике р > 0, считая с моего ухода) состоит в том, что это не доказано по сей день даже для частного случая, когда X есть гладкая проективная поверхность при i = 2. В действительности, насколько мне известно, никто после моего ухода не соизволил поинтересоваться этим важнейшим вопросом, типичным из тех, что вытекают из стандартных гипотез. Согласно велению моды, единственный эндоморфизм, достойный внимания — это эндоморфизм Фробениуса (с которым, отчасти, сумел разделаться Делинь, подручными средствами …).
62
(Предназначается для читателя-математика.) Другой способ представить себе категорию мотивов над полем k — рассмотреть ее как что-то вроде «обертывающей абелевой категории» для категории отделимых схем конечного типа над k. Мотив, соответствующий такой схеме X (или «мотивные когомологии X», которые я обозначаю Н*>mot(Х)) оказывается, таким образом, некоей абелианизированной «аватарой» X. Самое важное здесь, что совершенно так же, как алгебраическое многообразие X поддается «непрерывной деформации» (его класс изоморфизма зависит от непрерывных «параметров», или «модулей»), мотив, соответствующий X, или, более общо, «переменный» мотив, также поддается непрерывной деформации. Этот аспект мотивных когомологии находится в разительном контрасте с тем, что происходит со всеми классическими когомологическими инвариантами, в том числе l-адическими, за единственным исключением когомологии Ходжа комплексных алгебраических многообразий.
Это дает представление о том, до какой степени «мотивные когомологии» суть более тонкий инвариант, окруженный «арифметической формой» (если возможно отважиться на такое выражение) многообразия X куда плотнее, чем традиционные инварианты, чисто топологические. В моем восприятии мотивов они представляются, как что-то вроде «пуповины», незаметной, скрытой от взгляда, который связывает алгебро-геометрические свойства алгебраического многообразия со свойствами «арифметической» природы, воплощенными в его мотиве. Последний может рассматриваться, как объект, по духу «геометрический», но в котором «арифметические» свойства, определяемые геометрией, оказываются, так сказать, «обнаженными» и выставленными напоказ.
Итак, мотив представляется как глубочайший «инвариант формы» из тех, что вплоть до настоящего момента удавалось связать с алгебраическим многообразием, помимо его «мотивной фундаментальной группы». И тот и другой инварианты предстают передо мной, как «тени», проявления «мотивного гомотопического типа», которые остается описать (и о которых я скажу несколько слов в примечании «Обзор построек, или инструменты и видение» (PC IV, n° 178, см. постройка 5 (Мотивы), и в особенности стр. 1214)). Именно этот последний объект, мне кажется, должен стать наиболее совершенным воплощением ускользающего интуитивного представления об «арифметической (или мотивной) форме» произвольного алгебраического многообразия.
63
Я излагал свою точку зрения на мотивы тем, кто желал выслушать, на протяжении всех этих лет, не взяв на себя труда что бы то ни было опубликовать на этот предмет (в других насущных вопросах не было недостатка). Позже это дало возможность кое-каким из моих учеников «заимствовать» с пущей непринужденностью, под трогательным присмотром всех разом моих старинных друзей, прекрасно знакомых с истинным положением дел. (См. последующую сноску.)
64
В действительности, эта тема была эксгумирована в 1982 г. (годом позже, чем тема кристаллов) под тем же названием на этот раз (и в более узкой форме: дело ограничивалось случаем основного поля характеристики нуль), только имя задумавшего ее работника не произносилось. Это один пример из множества прочих, когда тема или понятие, похороненные тут же после моего ухода как безумные гротендические причуды, бывали извлечены из могил одна за другой некоторыми из моих учеников в ходе десяти-пятнадцати последующих лет со скромным достоинством и (нужно ли уточнять) без упоминания работника…
65
macho (исп.) — мужчина, мужской — прим. перев.
66
То, что я говорю здесь о математической работе, столь же справедливо для труда «медитации» (о котором в том или иной мере говорится на всем протяжении «РС»). Я уверен и в том, что нечто подобное возникает на пути всякого труда открытия, включая работу художника (скажем, поэта или писателя). Два «склона», которые я пытаюсь здесь описать, можно рассматривать и по-другому: первый связан с выражением готовых идей и возникающими при этом потребностями технического толка; на второй же переходишь, чтобы принимать сигнал (то есть ощущения, впечатления всякого рода). Напряженное внимание, преобразуя такой сигнал, делает его источником вдохновения. Оба аспекта присутствуют в каждый момент работы; преобладает, по очереди, то один, то другой.
67
Это не значит, что в моей работе не хватает так называемых «великих теорем». Их довольно, включая те, которые впервые разрешали давно висевшие в воздухе (не мной поставленные) вопросы. (Я сделал обзор некоторых из них в сноске на стр. 554 — в примечании «Море, которое вздымается…» (PC III, n° 122).) Но, как я подчеркнул в начале этой «прогулки» (на этапе «Точки зрения и видение, § 6), эти теоремы обретают для меня свой полный смысл лишь в щедром на толкования контексте единой темы, порожденной одной из таких «плодотворных идей». Тогда уже их доказательство легко вытекает из самой природы, из «глубины» несущей их темы. Так волны в реке свободно рождаются от самой водяной глуби и несутся вперед плавно, без усилий. Я говорю о том же самом, используя иные образы, в примечании «Море, которое вздымается…» (см. выше).
68
Cначала, приступая к Эпилогу, я собирался включить в него сжатый обзор некоторых из этих «глубоких изменений» и вкратце осветить эту «непрерывность по существу», как она мне виделась. Все же я передумал, дабы «Прогулка» не затянулась чрезмерно — и так уж она куда длиннее, чем я ожидал. Предполагаю вернуться к этому вопросу в Исторических Комментариях, намеченных для четвертого тома «РС», обращаясь на этот раз к читателю-математику (что должно полностью изменить задачи изложения).
69
Это утверждение (некоторым оно представляется чересчур категоричным) вполне выверено здравым смыслом. Оно ни более, ни менее соответствует действительности, чем утверждение (к нему я еще вернусь ниже) о том, что «ньютоновская модель» механики (земной или небесной) была «при смерти» в начале этого века, когда Эйнштейн явился ей на выручку. Несомненно, что еще и теперь для большей части «повседневных» ситуаций в физике модель Ньютона совершенно адекватна, и было бы нелепо (ввиду допустимой степени точности измерений) отправляться на поиски релятивистской модели. Точно так же, во многих ситуациях в математике привычные старинные понятия «пространства» и «многообразия» остаются абсолютно адекватными, так что нет нужды в погоне за нильпотентными элементами, топосами или «ручными структурами». Но и в том и в другом случае для растущего числа контекстов, участвующих в современных исследованиях, самые «обычные» ситуации не умещаются в рамках старинного восприятия.
70
(Предназначено для математика.) К этому «потомству» я отношу, в частности, формальные схемы, стэки (орбиобразия, «пространства» модулей — устоявшегося русского термина нет — прим. перев.) всех видов (особенно схемные, или формальные), наконец, так называемые «жесткие аналитические» пространства (их ввел Тэйт, следуя плану работ, который я составил, основываясь на новом понятии топоса, и в то же время на понятии формальной схемы). Это, впрочем, далеко не полный список...
71
Случилось так, впрочем, что к этим двоим младенцам прибавился третий, еще младше, который появился на свет в менее мягкие времена — малютка ручное Пространство. Как я уже отмечал выше, у него нет свидетельства о рождении, и я совершенно незаконно включил его, несмотря на это, в число двенадцати «главных тем», которые я имел честь привнести в математику.
72
Это, конечно, не слишком подробное описание идеи Эйнштейна. В техническом отношении, следует указать, какой структурой снабжено новое пространство-время (она, впрочем, уже «носилась в воздухе» после теории Максвелла и идей Лоренца). Существенный шаг вперед был не технической природы, но философской: принять в расчет, что понятие одновременности для событий, отдаленных в пространстве, не имеет никакой экспериментальной основы. Это заявление «устами младенца», это возглас: «А король-то голый!» — тот, с каким преодолевают известные нам «круги невидимые, но властные, которые ограничивают Вселенную»...
73
Речь идет прежде всего о понятии «риманова многообразия» и тензорного исчисления над этим многообразием.
74
Одна из самых поразительных черт, отличающих эту модель от евклидовой (или ньютоновской), а также от первой модели Эйнштейна (из «специальной теории относительности») состоит в том, что глобальная топологическая форма пространства-времени остается неопределенной, вместо того чтобы быть предписанной автоматически самой природой модели. Вопрос определения этой глобальной формы кажется мне (как математику) одним из самых увлекательных в космологии.
75
Гипотетическую теорию, которая объединила и согласовала бы между собой все частичные теории, о которых идет речь, назвали «теорией великого объединения». У меня есть ощущение, что то, над чем здесь стоит основательно поразмыслить, распадается на нижеследующие два раздела.
1) Требуется размышление «философской» природы над самим понятием «математической модели» и тем, как оно соотносится с действительностью. Начиная с успеха ньютоновской теории, среди физиков стало аксиомой по умолчанию, что существует математическая модель (даже единственно правильная модель) для абсолютно адекватного, без сучка и задоринки, выражения физической реальности. Это соглашение, более двух столетий задававшее у нас тон, представляет собою нечто вроде окаменелых останков некогда живого видения Пифагора: «Все есть число». Может статься, это новый «невидимый круг», пришедший на смену древним метафизическим кругам, чтобы ограничить Вселенную физика (в то время как раса «естественных философов» определенно представляется вымершей: их с легкостью вытеснили компьютеры…). Стоит лишь мгновение над этим поразмыслить, как становится ясно, что законность этого соглашения далеко не бесспорна. Есть даже весьма серьезные философские причины тому, чтобы априори ставить ее под сомнение, или, по крайней мере, предусматривать строжайшие границы применимости соглашения. Поняв это, остается — теперь, или никогда — подвергнуть эту аксиому тщательной критике, даже может быть, «доказать», вне всякого сомнения, что она не имеет под собой основания: что не существует неопровержимой математической модели, которая объясняла бы совокупность так называемых физических явлений, составляющих сегодняшний список.
Если определить удовлетворительным образом само понятие «математической модели» и «законности» ее (в пределах ошибки, допустимых для данных измерений), вопрос «теории великого объединения», или по крайней мере «оптимальной модели» (в смысле, подлежащем уточнению) окажется, наконец, ясно поставленным. В то же время мы, бесспорно, получим более точное представление о степени произвола, сопровождающего (с необходимостью, быть может) выбор таковой модели.
2) Лишь после такого размышления, мне кажется, «техническая» проблема отыскать точную модель, более удовлетворительную, чем те, что ей предшествовали, приобретает свой полный смысл. И одновременно, быть может, наступает пора извлечь на свет вторую аксиому, по умолчанию принятую среди физиков со времен античности, глубоко укоренившуюся в самом способе нашего восприятия пространства: аксиому, утверждающую непрерывность природы пространства и времени (или пространства-времени), «места», где происходят события, которые изучает физика.
Тому должно быть уже лет пятнадцать-двадцать, как, листая скромный томик, заключающий в себе полное собрание трудов Римана, я был поражен замечанием, брошенным им мимоходом. Согласно ему вполне могло бы случиться, что структура пространства в конце концов дискретна, и что «непрерывные» ее модели, нами изготовляемые, представляют собой упрощение (возможно, чрезмерное…) более сложной действительности. Для человеческого разума «непрерывное» уловить легче, чем «разрывное», так что первое служит нам приближением, помогающим понять второе. Это замечание, устами математика, необычайно и неожиданно по своей проницательности, ведь на тот момент евклидова модель физического пространства ни разу еще не ставилась под сомнение. В строго логическом смысле, это скорее разрывное традиционно служило техническим приемом подхода к непрерывному.
Достижения математики последних десятилетий, впрочем, привели к возникновению куда более близкого симбиоза между непрерывными и разрывными структурами, чем это можно было себе вообразить еще в первой половине нашего века. Всегда выходило так, что при поисках «удовлетворительной» модели (или, в случае необходимости, совокупности таких моделей, «подходящих» друг к другу в такой степени, в какой только возможно…), будь она «непрерывной», «дискретной» или «смешанной» природы, неизменно вступало в игру богатое концептуальное воображение и настоящее чутье, чтобы изучить и вывести на свет математические структуры нового типа. Воображение или «чутье» такого рода, мне кажется, редкая штука, не только среди физиков (Эйнштейн и Шредингер были, по-видимому, в числе немногих исключений), но даже среди математиков (тут уже я говорю с полным знанием дела).
Резюмируя, я предвижу, что ожидаемое обновление (если оно состоится…) будет проведено скорее математиком по духу, хорошо осведомленным в области серьезных физических проблем, нежели физиком. Но в первую очередь это должен быть человек с «широким философским кругозором», чтобы уловить суть проблемы. Она ведь отнюдь не имеет технической природы, но относится к основополагающим вопросам «естественной философии».
76
Я нимало не претендую на близкое знакомство с трудом Эйнштейна. На деле я не прочел ни одной из его работ и не узнал ни одной из его идей иначе, как со слуха, притом весьма приблизительно. Мне, однако, кажется, что я вижу лес за этими незнакомыми мне деревьями…
77
Для пояснения, что значит «при смерти» в применении к математической модели, см. сноску n° 70.
78
Как я это себе представляю (на основе отзвуков, долетавших до меня с разных сторон), в общем принято насчитывать в этом столетии три «революции», или великих переворота, в физике: теория Эйнштейна, открытие радиоактивности супругами Кюри, и введение квантовой механики Шредингером.
79
Еще в детстве, история (да и география, впрочем) меня никогда особенно не увлекала. (В пятой части «РС» (незавершенной) мне выдался случай «мимоходом» обнаружить то, что мне кажется глубокой причиной наличия у меня этого частичного «барьера» по отношению к истории — барьера, который начал, по моему, рассасываться в последние годы.) К тому же, математическое образование, полученное от старших, в «бурбакистском кругу», не навело в моей голове порядка: случайные ссылки на историю были в нем более чем редки.
80
Через несколько часов после написания этих строчек я был вдруг потрясен тем, что мне и в голову не пришло упомянуть здесь о широком синтезе разделов современной математики, который старался устроить союз (коллектив) Н. Бурбаки. (О группе Бурбаки будет сказано немало в первой части «РС».) Так вышло, мне кажется, по двум причинам.
С одной стороны, этот синтез ограничивался чем-то вроде «приведения в порядок» широкой совокупности идей и результатов, уже известных, без того, чтобы добавить к ним свои новаторские идеи. Если там была новая идея, то она заключалась в строгом математическом определении понятия «структуры», явившейся бесценною путеводною нитью для всей деятельности союза. Но эта идея, мне кажется, подобна скорее идее толкового и не без воображения лексикографа, чем одной из основ обновления языка, дающей свежее представление о реальности (в данном случае, математической).
С другой стороны, считая с пятидесятых годов, идея структуры оказалась в хвосте событий, с неожиданным наплывом «категорных» методов в некоторые из наиболее динамичных разделов математики, именно топологию и алгебраическую геометрию. (Так, понятие «топоса» отказалось влезть в «мешок Бурбаки», не то он бы расползся по швам!) Решив для себя, со всей ответственностью, разумеется, не ввязываться в это дело, Бурбаки тем самым отреклись от своего исходного намерения, состоявшего в том, чтобы обеспечить единые основы и единый язык для современной математики в целом.
Они, напротив, закрепили на месте язык, и в то же время определенный стиль изложения и подхода к математике. Этот стиль появился, как отражение (весьма неполное) некоего духа, когда-то живого и впрямую унаследованного от Гильберта. В течение пятидесятых и шестидесятых годов этот стиль, к лучшему то или к худшему (вот это скорее), сделался в конце концов обязательным. За двадцать лет он стал жестким каноном чисто наружной, парадной «строгости»; дух же, его некогда оживлявший, словно бы исчез безвозвратно.
81
Эварист Галуа (1811–1832) был убит на дуэли, в возрасте двадцати одного года. Существует, я думаю, несколько его биографий. Я в юности читал о нем роман-биографию, написанный физиком Инфельдом и немало меня тогда поразивший.
82
См. «Наследие Галуа» (PC I, § 7).
83
Я, впрочем, убежден, что Галуа пошел бы намного дальше меня. С одной стороны, из-за его исключительной одаренности (что до меня, моя доля куда меньше в этом отношении). С другой — потому, что он, возможно, не допустил бы, в отличие от меня, чтобы большая часть его энергии ушла на эти нескончаемые усилия: постепенно, вплоть до малейших деталей, приводить в должный вид то, что и так уже более или менее известно…
84
Я понемногу, то здесь, то там, говорю о Клоде Шевалле на страницах «РС», в особенности в разделе «Встреча с Клодом Шевалле, или случай дать волю чувствам» (PC I, § 11), и в примечании «Прощание с Клодом Шевалле» (PC III, примечание n° 100).
85
Centre national de la recherche scientifique = Национальный центр научных исследований — прим. перев.
86
Ecole Normale Superieure — прим. перев.
87
На самом деле этот термин, carapace, никогда на русский не переводился, а был позднее заменен на «резольвенты Картана» — прим. перев.
88
Institut des Hautes Etudes Scientifiques — Институт высших научных исследований — прим. перев.
89
(30 сентября.) У всего этого, однако, есть и другая сторона; смотри примечание от 1-го июня, написанное с промежутком в три месяца. Оно называется «Двусмысленность» (n°63). В нем говорится о том, к чему может иногда привести потворство себе и другим.
90
«Случай» подвернулся раньше, чем я предполагал. Размышлению об этой геометрической школе посвящена вторая часть «PC», под заголовком «Похороны».
91
Comptes rendus de l'Academie des Sciences — Доклады Академии Наук — прим. перев.
92
(8-е августа.) Просмотрев свои записи, я обнаружил, что первые мысли о мотивах пришли мне в голову в начале, а не в конце шестидесятых.
93
(8 августа.) С тех пор я понял, что это, напротив, далеко не так уж неважно. Именно здесь проходит граница между «спортивным подходом» и профессиональной бесчестностью; кто поручится, что я не переступил ее тогда?
94
Примечания даются не в виде сносок, а собраны все вместе после основного текста. Некоторые из них даже имеют собственные названия. Здесь приводится их список с порядковыми номерами (средний столбец) и номерами разделов, к которым данные примечания относятся (правый столбец). — Прим. перев.
Примечания >44i и далее (к § 50 «Груз прошлого») не вошли в этот список: они составляют часть «Похороны».
95
(Август 1984 г.) См. на эту тему примечание «Побоище», n° 87 (два последних абзаца).
96
Речь идет о третьем томе «Размышлений о математике», а не о настоящем, первом томе «PC» — см. Введение, §5.
97
В частности, я имел случай просмотреть кое-какие публикации Бертло и Делиня, которые они любезно мне переслали.
98
Ср. также примечание (>23iv), добавленное позднее.
99
Нико Книпер любезно переслал мне брошюру, недавно выпущенную в IHES и посвященную двадцати пятилетию со дня его основания. В ней, однако, ни слова не говорится об этих непростых временах — о том, как все начиналось. Должно быть, составители брошюры сочли эти подробности недостойными столь торжественного события, с большой помпой отмеченного в прошлом году.
Это издание подводит итог многолетних разысканий о Марке Шагале с целью собрать весь известный материал (печатный, архивный, иллюстративный), относящийся к российским годам жизни художника и его связям с Россией. Книга не только обобщает большой объем предшествующих исследований и публикаций, но и вводит в научный оборот значительный корпус новых документов, позволяющих прояснить важные факты и обстоятельства шагаловской биографии. Таковы, к примеру, сведения о родословии и семье художника, свод документов о его деятельности на посту комиссара по делам искусств в революционном Витебске, дипломатическая переписка по поводу его визита в Москву и Ленинград в 1973 году, и в особой мере его обширная переписка с русскоязычными корреспондентами.
Настоящие материалы подготовлены в связи с 200-летней годовщиной рождения великого русского поэта М. Ю. Лермонтова, которая празднуется в 2014 году. Условно книгу можно разделить на две части: первая часть содержит описание дуэлей Лермонтова, а вторая – краткие пояснения к впервые издаваемому на русском языке Дуэльному кодексу де Шатовильяра.
Книга рассказывает о жизненном пути И. И. Скворцова-Степанова — одного из видных деятелей партии, друга и соратника В. И. Ленина, члена ЦК партии, ответственного редактора газеты «Известия». И. И. Скворцов-Степанов был блестящим публицистом и видным ученым-марксистом, автором известных исторических, экономических и философских исследований, переводчиком многих произведений К. Маркса и Ф. Энгельса на русский язык (в том числе «Капитала»).
Один из самых преуспевающих предпринимателей Японии — Казуо Инамори делится в книге своими философскими воззрениями, следуя которым он живет и работает уже более трех десятилетий. Эта замечательная книга вселяет веру в бесконечные возможности человека. Она наполнена мудростью, помогающей преодолевать невзгоды и превращать мечты в реальность. Книга рассчитана на широкий круг читателей.
Биография Джоан Роулинг, написанная итальянской исследовательницей ее жизни и творчества Мариной Ленти. Роулинг никогда не соглашалась на выпуск официальной биографии, поэтому и на родине писательницы их опубликовано немного. Вся информация почерпнута автором из заявлений, которые делала в средствах массовой информации в течение последних двадцати трех лет сама Роулинг либо те, кто с ней связан, а также из новостных публикаций про писательницу с тех пор, как она стала мировой знаменитостью. В книге есть одна выразительная особенность.
Имя банкирского дома Ротшильдов сегодня известно каждому. О Ротшильдах слагались легенды и ходили самые невероятные слухи, их изображали на карикатурах в виде пауков, опутавших земной шар. Люди, объединенные этой фамилией, до сих пор олицетворяют жизненный успех. В чем же секрет этого успеха? О становлении банкирского дома Ротшильдов и их продвижении к власти и могуществу рассказывает израильский историк, журналист Атекс Фрид, автор многочисленных научно-популярных статей.