Учебное пособие по курсу «Нейроинформатика» - [42]

Шрифт
Интервал

Отбор примеров в обучающее множество, открытие сеанса работы с задачником должны выполняться учителем или контрастером. Исполнитель только организует перебор примеров в обучающем множестве.

При полной или частичной аппаратной реализации нейрокомпьютера компонент исполнитель эффективно реализуется аппаратно, по следующим причинам.

Исполнитель реализует исключительно связные функции по отношению к другим компонентам.

Исполняемые им запросы постоянны и не зависят от реализаций других компонентов нейрокомпьютера.

Этот компонент работает чаще, чем любой другой, и, как следствие, ускорение в работе исполнителя приводит к соизмеримому ускорению работы нейрокомпьютера.

Лекция 11.2, 12. Учитель

Этот компонент не является столь универсальным как задачник, оценка или нейронная сеть, поскольку существует ряд алгоритмов обучения жестко привязанных к архитектуре нейронной сети. Примерами таких алгоритмов могут служить обучение (формирование синаптической карты) сети Хопфилда [312], обучение сети Кохонена [ 31, 132] и ряд других аналогичных сетей. Однако в главе «Описание нейронных сетей» приводится способ формирования сетей, позволяющий обучать сети Хопфилда [312] и Кохонена [131, 132] методом обратного распространения ошибки. Описываемый в этой главе компонент учитель ориентирован в первую очередь на обучение двойственных сетей (сетей обратного распространения ошибки).

Что можно обучать методом двойственности

Как правило, метод двойственности (обратного распространения ошибки) используют для подстройки параметров нейронной сети. Однако, как было показано в главе «Описание нейронных сетей», сеть может вычислять не только градиент функции оценки по обучаемым параметрам сети, но и по входным сигналам сети. Используя градиент функции оценки по входным сигналам сети можно решать задачу, обратную по отношению к обучению нейронной сети.

Рассмотрим следующий пример. Пусть есть сеть, обученная предсказывать по текущему состоянию больного и набору применяемых лекарств состояние больного через некоторый промежуток времени. Поступил новый больной. Его параметры ввели сети и она выдала прогноз. Из прогноза следует ухудшение некоторых параметров состояния больного. Возьмем выданный сетью прогноз, заменим значения параметров, по которым наблюдается ухудшение, на желаемые значения. Полученный вектор ответов объявим правильным ответом. Имея правильный ответ и ответ, выданный сетью, вычислим градиент функции оценки по входным сигналам сети. В соответствии со значениями элементов градиента изменим значения входных сигналов сети так, чтобы оценка уменьшилась. Проделав эту процедуру несколько раз, получим вектор входных сигналов, порождающих правильный ответ. Далее врач должен определить, каким способом (какими лекарствами или процедурами) перевести больного в требуемое (полученное в ходе обучения входных сигналов) состояние. В большинстве случаев часть входных сигналов не подлежит изменению (например пол или возраст больного). В этом случае эти входные сигналы должны быть помечены как не обучаемые (см. использование маски обучаемости входных сигналов в главе «Описание нейронных сетей»).

Таким образом, способность сетей вычислять градиент функции оценки по входным параметрам сети позволяет решать вполне осмысленную обратную задачу: так подобрать входные сигналы сети, чтобы выходные сигналы удовлетворяли заданным требованиям.

Кроме того, использование нейронных сетей позволяет ставить новые вопросы перед исследователем. В практике группы «НейроКомп» был следующий случай. Была поставлена задача обучить сеть ставить диагноз вторичного иммунодефицита по данным анализов крови и клеточного метаболизма. Вся обучающая выборка была разбита на два класса: больные и здоровые. При анализе базы данных стандартными статистическими методами значимых отличий обнаружить не удалось. Сеть оказалась не способна обучиться. Далее у исследователя было два пути: либо увеличить число нейронов в сети, либо определить, что мешает обучению. Исследователи выбрали второй путь. При обучении сети была применена следующая процедура: как только обучение сети останавливалось из-за невозможности дальнейшего уменьшения оценки, пример, имеющий наихудшую оценку, исключался из обучающего множества. После того, как сеть обучилась решению задачи на усеченном обучающем множестве, был проведен анализ исключенных примеров. Выяснилось, что исключено около половины больных. Тогда множество больных было разбито на два класса — больные1 (оставшиеся в обучающем множестве) и больные2 (исключенные). При таком разбиении обучающей выборки стандартные методы статистики показали значимые различия в параметрах классов. Обучение сети классификации на три класса быстро завершилось полным успехом. При содержательном анализе примеров, составляющих классы больные1 и больные2, было установлено, что к классу болные1 относятся больные на завершающей стадии заболевания, а к классу больные2 — на начальной. Ранее такое разбиение больных не проводилось. Таким образом, обучение нейронной сети решению прикладной задачи поставило перед исследователем содержательный вопрос, позволивший получить новое знание о предметной области.


Рекомендуем почитать
Часы и время

Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.


Госзаказ. Капитальный и текущий ремонт

Издание предназначено для специалистов – занимающихся подготовкой и размещением заказов на проведение капитального и текущего ремонтов зданий и сооружений для государственных и муниципальных нужд. В издании рассматриваются вопросы обследования зданий, подготовки дефектных ведомостей, составления технического задания, подготовке и проверке (экспертизе) проектно – сметной документации.Особое внимание уделено основным аспектам составления проекта государственного (муниципального) контракта на выполнение работ по капитальному и текущему ремонту зданий и сооружений, в том числе порядку составления форм КС-2, КС-3 при бюджетном финансировании ремонтных работ.


Беседы о физике и технике

В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.


"Наутилусы" наших дней

Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…


Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.