У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [37]

Шрифт
Интервал

На основе этих аксиом можно синтаксически (согласно терминологии из предыдущей главы) доказать, что не может быть двух различных нейтральных элементов. То есть если е и е' — элементы, удовлетворяющие аксиоме 2, то обязательно е = е'. Доказательство состоит в следующем: предположим, что для e и e' верна аксиома 2. Тогда, так как е — нейтральный элемент, е • е' = е' (при операциях с е не происходит никаких изменений). Но е также нейтральный элемент, тогда e' • е = е (при операциях с е' не происходит никаких изменений). Получается, что:

е = е' • е = е • e' = е', следовательно, е = е'.

Любое утверждение, выводимое из аксиом, обязательно будет справедливо во всех моделях, потому что это же самое доказательство воспроизводимо на каждом конкретном примере. Следовательно, в любом примере, выполняющем аксиомы 1 и 2, окажется, что нейтральный элемент операции является единственным. Это происходит, конечно же, в случае суммы (где нет другого нейтрального элемента, кроме 0) и произведения (где единственный нейтральный элемент — 1).

Теперь назовем поглощающим такое число ƒ, что при операциях с ним результат вновь дает ƒ(то есть а • ƒ = ƒ), и рассмотрим утверждение Р "у операции есть поглощающий элемент". Вопрос: можно ли вывести Р из аксиом 1 и 2? Можно ли вывести отрицание Р? Из того факта, что операция коммутативна и имеет нейтральный элемент, можем ли мы вывести, обладает она поглощающим элементом или нет?


Сверху — аксиомы коммутативной операции с нейтральным элементом. Слева внизу — пример, выполняющий эти аксиомы, но не имеющий поглощающего элемента. Справа внизу — пример, в котором имеется поглощающий элемент. Следовательно, существование или отсутствие поглощающего элемента не может быть выведено из аксиом из верхней части схемы.

Если бы существование поглощающего элемента было доказуемым на основе аксиом, то любая коммутативная операция с нейтральным элементом обладала бы поглощающим элементом. Однако это не так, поскольку у суммы, коммутативной операции с нейтральным элементом, нет поглощающих элементов. Следовательно, утверждение Р недоказуемо на основе аксиом 1 и 2.

А если бы отсутствие поглощающего элемента было доказуемым, то ни одна операция, выполняющая аксиомы 1 и 2, не имела бы поглощающих элементов. Однако у произведения целых чисел он есть, поскольку 0 — поглощающий элемент, так что отрицание Р также недоказуемо на основе аксиом. Существование или отсутствие поглощающего элемента не может быть ни доказано, ни опровергнуто на основе аксиом 1 и 2 (см. схему на этой странице).

Гёдель приводит подобные рассуждения в своей второй статье по теории относительности, чтобы опровергнуть факт, утверждаемый Джеймсом Джинсом, о том, что в рамках теории относительности можно определить понятие абсолютного времени. Гёдель отвечает ему, что поскольку он нашел модели теории, в которых этого понятия не существует, невозможно вывести из уравнений Эйнштейна обязательного существования абсолютного времени.

Вернемся к проблеме Кантора. Способ, которым Гёдель и Коэн доказали, что континуум-гипотеза неразрешима на основе аксиом теории множеств, подобен способу, которым мы воспользовались для доказательства неразрешимости Р относительно аксиом 1 и 2. В статьях 1938 и 1939 годов, а также более детально в книге 1940 года Гёдель демонстрирует модель, выполняющую аксиомы теории множеств, для которой континуум-гипотеза верна. В этой модели нет множеств с промежуточными кардинальными числами между N и R — подобно тому, как мы нашли модель, в которой нет поглощающих элементов. Это доказывает, что СН не может быть опровергнута (если бы ее можно было опровергнуть на основе аксиом, она была бы ложной во всех моделях).


Изменение — это иллюзия видимости, вызванная особенностями нашего восприятия.

Курт Гёдель, 1949 год


В 1963 году Коэн нашел модель аксиом теории множеств, в которой существует множество с промежуточным кардинальным числом между N и К, то есть модель, в которой СН ложна, и таким образом доказал, что СН не может быть доказана на основе аксиом теории множеств.

Но в стандартной модели, которую мы имеем в виду, формулируя аксиомы теории множеств, континуум-гипотеза истинна или ложна? На этот вопрос еще нет ответа. Многие специалисты считают, что надо найти еще одну аксиому, которую будут согласны принять как верную все заинтересованные лица, и она позволит в конце концов доказать или опровергнуть СН в стандартной модели. Общее мнение, основанное на философских аргументах (Гёдель и Коэн его разделяли), состоит в том, что континуум-гипотеза на самом деле ложна.


ГЛАВА 5

Следствия из работы Гёделя

Теоремы Гёделя о неполноте обозначили поворотную точку в исследованиях, связанных с философией математики. Современные тексты по философии математики обязательно учитывают теоремы Гёделя, анализируют и делают из них выводы, которые часто становятся причиной споров. Изучение следствий из теорем о неполноте едва лишь началось и, возможно, будет длиться еще десятки или сотни лет.

В Принстоне Гёдель нашел спокойный и однообразный социальный климат, идеально подходящий его образу жизни. Однако даже благоприятное окружение не смягчило ни ипохондрию ученого, ни его чудачества. Напротив, с течением времени его странности усилились до такой степени, что в 1941 году директор Института перспективных исследований Франк Эйделотт был вынужден спросить у личного врача Гёделя, существует ли опасность того, что его начинающаяся паранойя станет опасной для него и окружающих. Хотя врач ответил, что такой опасности нет, сам факт возникновения этого вопроса говорит о многом.


Еще от автора Густаво Пиньейро
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.


Рекомендуем почитать
Искусство соперничества

«Искусство соперничества» – это четыре истории о непростых личных взаимоотношениях прославленных художников – Мане и Дега, Пикассо и Матисса, Фрейда и Бэкона, Поллока и Де Кунинга. Эти истории о дружбе равно одаренных людей, где ревность, зависть и чувство соперничества соседствуют с восхищением, стимулируя каждого из двоих на пределе сил стремиться к новым и новым творческим вершинам. Восемь художников – героев книги Сми сегодня знамениты на весь мир. Но смогли бы они достичь этого, не испытав определенного влияния современника? Современника равно талантливого и амбициозного, но наделенного от природы иным балансом сильных и слабых сторон. С присущим ему остроумием и вниманием к психологической подоплеке событий Себастьян Сми исследует тонкие материи личных взаимоотношений творческих натур, осложненных необходимостью поиска собственного пути, а следовательно, неминуемым конфликтом с ожиданиями близких.


Что мы думаем о машинах, которые думают

«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью.


Возможен ли вечный двигатель?

К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.