У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [35]
Чтобы пойти еще дальше, необходимо кратко остановиться на очень распространенном способе представления чисел на числовой прямой.
Фрагмент числовой прямой с обозначенными на ней некоторыми целыми числами.
Числовая прямая — это прямая линия, которая превращается в числовую, когда мы назначаем числа ее точкам. Самый простой способ обозначить целые числа — назначить одной точке число 0, другой — 1. Когда они назначены, натуральные числа располагаются после 1, при этом сохраняется расстояние между соседними числами. Отрицательные числа расположены симметрично положительным относительно числа 0. Очевидно, что как только будут назначены все целые числа, будет еще много точек, не имеющих чисел. Например, 1/2 = 0,5 находится ровно посередине между 0 и 1; 4/3 = 1,333... — на трети пути между 1 и 2; √2 = 1,4142... — между 1 и 1,5 (намного ближе к 1,5, чем к 1); π = 3,1415... — немного дальше 3.
Множеством действительных чисел (которое обычно обозначается буквой R) называют множество, образованное числами, заполняющими всю числовую прямую. Каждой точке числовой прямой соответствует действительное число, и наоборот. Среди действительных чисел, конечно же, есть и целые, и упомянутые выше √2 или π, а также другие бесконечные числа, такие как 12,22222 или —2,01001000100001...
У множеств N и Ζ, как мы видели, одно и то же кардинальное число, но... происходит ли то же самое с N и R? Кантор открыл, что это не так: N и М имеют разные кардинальные числа, и между ними невозможно установить биективное соответствие. Доказательство этого факта состоит в том, что любая попытка установить биективное соответствие между натуральными и действительными числами провалится и по крайней мере одно действительное число неизбежно останется без соответствия. Если бы натуральные числа обозначали стулья, а действительные — детей, то всегда будет один ребенок, оставшийся без стула.
Чтобы понять эту идею, приведем доказательство для одного специфического примера, хотя ясно, что эта процедура работает во всех случаях. Итак, назначим действительное число каждому натуральному и посмотрим, как можно найти пропущенное число (на следующем рисунке показаны только числа от 1 до 5, но в действительности список продолжается до неопределенности).
Правило, по которому мы назначили эти числа, неясно, но это не имеет значения, поскольку метод работает при любом правиле назначения. В качестве первого шага этого метода сосредоточим наше внимание на цифрах, находящихся после запятой.
Обратим внимание на диагональную линию, начинающуюся в левом верхнем конце, опускающуюся вправо (см. рисунок). Выдающаяся роль этой линии определила название метода — диагональное доказательство.
Число, которое мы ищем (оно осталось без пары), начинается с 0, а знаки после запятой определены числами, появляющимися по диагонали.
Можно было бы подумать, будто N и R имеют разные кардинальные числа потому, что N — дискретное множество (то есть его графическое представление заключено в изолированных точках), в то время как R не является таковым (между двумя действительными числами всегда есть другие действительные числа, в R нет изолированных точек).
Однако дело не в этом. Возьмем множество рациональных чисел, которое обычно обозначается буквой Q и в котором содержатся все рациональные числа, то есть те, что можно представить в виде дроби (или в виде частного двух целых чисел). Например, 1/2 = 0,5 и -4/3 = -1,333... рациональные числа, в то время как √2 = 1,4142... и π = 3,1415... таковыми не являются. Целые числа включены в рациональные, поскольку, например, 6 = 6/1. Хотя рациональные числа не заполняют всю числовую прямую, они не дискретны: между двумя рациональными числами всегда есть другое рациональное число. Например, между двумя рациональными числами всегда лежит среднее для них число. Так, между 1/3 и 1/2 находится
между 1/3 и 5/12 находится среднее для них число, а между 1/3 и этим средним числом — их среднее число, и так далее (схема выше).
Несмотря на то что Q — плотное множество, а N — дискретное, между ними можно установить биективное соответствие. Один из способов сделать это показан на схеме, где появляются все рациональные числа, а стрелки указывают путь, вдоль которого можно пройти один раз через каждую дробь. Способ установления последовательности следующий: первому числу пути (то есть 0) соответствует натуральное число 1, второму (то есть 1) — натуральное число 2, третьему (то есть 1/2) — число 3, и так далее. Пояснение: дробь -2/2 занимает седьмое место на пути, и сначала мы должны были бы назначить ему натуральное число 7. Однако -2/2 равно -1 (-1 и -2/2 — это одно и то же число, записанное по-разному), а числу -1 мы до этого назначили натуральное число 5. Мы не можем назначить 5 числу -1, а 7 — числу -2/2, поскольку это одно и то же число. Способ решения этой проблемы — просто опустить -2/2 и назначить 7 следующей дроби, то есть -2/3.
Для получения первого знака после запятой числа мы берем первую цифру диагонали и прибавляем к ней 1 (если бы это было 9, взяли бы 0). В примере наше первое число диагонали — 3, так что наше число будет начинаться с 0,4.
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.
Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.
В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.
Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.