У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [24]
Другая теорема, которую Гёдель представил в этой статье 1931 года, сегодня известна как вторая теорема о неполноте, или вторая теорема Гёделя. В ней говорится о невозможности алгоритмически проверить истинность множества арифметических аксиом. Мы обсудим эту теорему чуть позже. Следует сказать, что в статье не содержалось ее детального доказательства. Гёдель ограничился лишь тем, что в общих чертах изложил идею и отметил, что собирается написать вторую часть статьи с полным доказательством. Однако болезнь помешала ему сделать это в ближайшие месяцы, а после выздоровления выяснилось, что доказательства обеих теорем (даже второй, о которой ученый только намекнул) получили всеобщее признание. В этой ситуации Гёдель не счел нужным публиковать дополнительные пояснения, поэтому вторая часть статьи так и не была написана. (Оригинальное название статьи на немецком языке заканчивается римской цифрой I: это указывает на то, что речь идет только о первой части. В переводах на испанский, английский и другие языки ее обычно опускают.)
Преодолев нервный кризис, Гёдель в 1933 году начал работу в Венском университете в качестве приват-доцента. В то время в университетах Центральной Европы с должности приват-доцента обычно начинали карьеру преподавателя. Кроме того, как мы уже сказали, Гёдель превратился в международную знаменитость и в том же году был приглашен в США прочитать лекцию на ежегодном собрании Американского математического общества.
Во время этой первой поездки в США Гёдель познакомился с Альбертом Эйнштейном, который эмигрировал туда в 1933 году. Между ними сразу зародилась теплая дружба, которая длилась до самой смерти Эйнштейна в 1955 году.
В последующие два года, 1934 и 1935, Гёдель снова ездил в США, уже по приглашению Института перспективных исследований в Принстоне. В этом учреждении он прочитал несколько курсов и лекций, не только по своим теоремам о неполноте, но и по темам, затронутым в последующих исследованиях. Среди них, например, такая проблема: существует ли алгоритм, который при заданном множестве аксиом и высказывании Р позволит определить, доказуемо ли Р на основе этих аксиом? Гёдель получил несколько частичных решений, а полностью проблема была решена в 1936 году американским логиком Алонзо Чёрчем, который доказал, что алгоритма с такими
характеристиками не существует. Эта проблема, как и другие, поставленные самим Гёделем или другими логиками, вдохновленными его исследованиями, положила начало теории вычислимости, то есть изучению того, при каких условиях математическая проблема решаема алгоритмически.
Институт перспективных исследований в Принстоне (Нью-Джерси, США), основанный в 1930 году, имел целью собрать международную научно-исследовательскую элиту. И действительно, в нем трудились такие прославленные ученые, как Курт Гёдель, Альберт Эйнштейн, Джулиус Роберт Оппенгеймер (американский физик-теоретик, научный руководитель Манхэттенского проекта), Джон фон Нейман, Оскар Моргенштерн (последние двое — создатели теории игр) и Герман Вейль (выдающийся немецкий физик и математик).
Во время поездок в США Гёдель продемонстрировал свои методы, идеи и поставленные им проблемы, и это дало импульс развитию американской школы математической логики, где блистали Уиллард ван Орман Куайн, Стивен Коул Клини и уже упомянутый Алонзо Чёрч. Также работы Гёделя дали толчок развитию математической логики в целом; по сравнению с другими ученый публиковал очень мало научных работ, но каждая из них открывала новую отрасль в логике и вводила методы и идеи, актуальные до сих пор.
Алонзо Чёрч был одним из главных представителей американской школы математической логики, которая образовалась практически сразу после прочтения Гёделем курсов и лекций в США в 1930-х годах. Чёрч родился в Вашингтоне 14 июня 1903 года и изучал математику в Принстонском университете, где защитил докторскую диссертацию в 1927 году. Его научным руководителем был Освальд Веблен (который помогал в организации Института перспективных исследований в Принстоне и пригласил Гёделя прочитать там свои первые лекции). Чёрч внес вклад в логику первого порядка, теорию вычислимости (которая исследует, какие математические проблемы могут быть решены алгоритмически, а какие нет) и теоретическую информатику. Он также создал лямбда-исчисление, которое до сих пор является важным инструментом в изучении теории алгоритмов. Ученый скончался в США в 1995 году.
В то время как Гёдель наслаждался плодами растущего академического престижа, политическая ситуация в Вене становилась всё более сложной. После того как Адольф Гитлер пришел к власти, он объявил о своем намерении сделать Австрию частью Германии. С этой целью он начал политическое и военное давление на соседнюю страну. В 1931 году он потребовал, чтобы нацистская партия, которая в Австрии была запрещена, получила признание и вошла в состав правительства. Однако на выборах в Австрии в апреле 1932 года нацисты не одержали ожидаемой победы, так что перешли в оппозицию и прибегли к террористическим методам. Произошла серия терактов, убийств высокопоставленных лиц и попыток государственного переворота, которые к 1937 году привели Австрию к угрозе гражданской войны.
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.