У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [22]

Шрифт
Интервал

Второй член последовательности получается, если заменить каждое 2 на 3 в выражении 222 + 2>2+1 +1 и затем вычесть 1:

>3³ + З>3+1 +1) - 1 = З>3³ + З>3+1 = 7625597485068

Второе число последовательности Гудстейна для числа 25 — это 7625597485068. Для получения третьего числа заменяем каждое 3 на 4 в З>3³ + З>3+1 и вычитаем 1. Получается 4>4⁴ + 4>4+1 - 1, операция, которая в результате дает число из 155 цифр. Прежде чем перейти к следующему шагу, надо записать 4>4⁴ + 4>4+1 - 1 как сумму степеней числа 4, в которой каждая степень появляется самое большое 3 раза и в которой показатели степени также являются суммой степеней числа 4. Заметьте, что 4>4⁴ + 4>4+1 - 1 не записано таким образом, поскольку присутствует вычитание. Правильная запись:

4>4⁴ + 4>4 + 4>4 + 4>4 + 4>1+1+1 + 4>1+1+1 + 4>1+1+1 + 4>1+1 + 4>1+1 + 4>1+1 + 4 + 4 + 4 + 1 + 1 + 1.

Чтобы получить четвертое число, заменим каждое 4 на 5 и вычтем 1. То есть:

5>5⁵ + 5>5 + 5>5 + 5>5 + 5>1+1+1 + 5>1+1+1 + 5>1+1+1 + 5>1+1 + 5>1+1 + 5>1+1 + 5 + 5 + 5 + 1 + 1.

Результат последнего вычисления состоит из более чем 2000 цифр. Для получения следующего числа заменим каждое 5 на 6 и вычтем 1, и так далее. Кажется, что последовательность растет до бесконечности. Однако в теореме Гудстейна, доказанной им около 1950 года, утверждается, что вне зависимости от исходного числа последовательность всегда за конечное количество шагов достигнет 0. В доказательстве Гудстейна были использованы понятия теории множеств и оставалась открытой возможность того, что оно неосуществимо на основе аксиом Пеано. Это было подтверждено в 1982 году Лори Кирби и Джеффом Пэрисом, которые доказали, что теорема Гудстейна действительно недоказуема на основе аксиом Пеано с помощью рассуждений, проверяемых алгоритмически.


Посмотрим внимательно на последний шаг: d(423) — это код "d(423) — четное". То есть "d(423) — четное число" может читаться как самореферентное высказывание, говорящее о своем собственном коде следующее: "мой код — четное число". Если бы у "d(423) — четное число" кодом было 503, то высказывание можно было бы записать как "503 — четное число" и в нем бы ложно утверждалось, что его собственный код — четное число.

Метод самореференции говорит, что эта процедура может применяться к любому арифметическому свойству Р Возьмем пропозициональную функцию "х выполняет свойство Р" и трансформируем ее в "d(x) выполняет свойство Р". Если код последнего выражения — число я, то "d(n) выполняет свойство Р" может быть прочитано посредством кодификации Гёделя как самореферентное высказывание, гласящее: "мой код выполняет свойство Р". Теперь посмотрим, как этот метод приведет нас в итоге к искомому высказыванию G.

Мы уже сказали, что "быть кодом доказуемого высказывания" — это свойство, которое можно выразить в терминах сумм, произведений и логических операций. Очевидно, что то же самое происходит и с его отрицанием. Следовательно, мы можем записать пропозициональную функцию:

"x: не является кодом доказуемого высказывания", что, как говорится в методе самореференции, превращается в: "d(x) не является кодом доказуемого высказывания". Если его код — число т, то:

G: "d(m) не является кодом доказуемого высказывания"

имеет в качестве кода число d(m) и может рассматриваться как самореферентное высказывание, говорящее о своем коде следующее: "мой собственный код не соответствует доказуемому высказыванию". Другими словами, в G говорится:

"G недоказуемо".

Как мы видели в начале доказательства, это высказывание является истинным и одновременно недоказуемым (вспомним, что "доказуемый" всегда означает "доказуемый на основе предложенных аксиом"). Мы доказали, что существует высказывание G, являющееся истинным и недоказуемым, и описали шаги, необходимые для того, чтобы записать его. Этим завершается доказательство первой теоремы Гёделя о неполноте.


ПАРАДОКС ЛЖЕЦА

Один из самых древних известных парадоксов — это так называемый парадокс лжеца. Он возникает, если поставить вопрос, является ли утверждение "это предложение ложное" истинным или ложным. Если утверждение истинно, то, судя по его смыслу, оно оказывается ложным. Но если оно ложно, то оно получается истинным. Так мы сталкиваемся с бессмыслицей, порочным кругом, который снова и снова приводит нас от истинности к ложности и от ложности к истинности. В своей статье 1931 года Гёдель объяснил, что его доказательство найдено под влиянием парадокса лжеца, только вместо того чтобы написать высказывание, говорящее о собственной ложности, Гёдель написал высказывание, говорящее о собственной недоказуемости. Высказывание "это предложение ложно" — парадоксальная бессмыслица. Но высказывание "это предложение недоказуемо на основе предложенных аксиом" — недоказуемая истина.


Важное пояснение: рассуждение, которое мы провели, на самом деле не является формальным доказательством первой теоремы Гёделя о неполноте. Это только введение, полезное для понимания основных идей, но не объясняющее специфических деталей того, как эти идеи применяются на практике. Если читателя заинтересовали детали, он может углубиться в технические работы по математической логике.


Еще от автора Густаво Пиньейро
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.