У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [15]
науки, и этим темам более не изменял. В 1922 году он занял кафедру философии в Венском университете и в это же время основал Венский кружок как центр для обсуждения новых философских горизонтов, далеких от метафизики и сосредоточенных на эмпиризме. Встречи кружка прекратились в 1936 году, с убийством Морица Шлика студентом университета (некоторые историки утверждают, что студент был психически нездоров, другие — будто он был сторонником нацистов, хотя обе версии не исключают друг друга).
Гёдель представил свою диссертацию в Венском университете 6 февраля 1930 года. В том же году он опубликовал ее в виде статьи. Эта его первая научная публикация появилась в томе 37 (1930) журнала Monatshefte für Mathematik und Physik под заголовком «Полнота аксиом логического функционального исчисления». Теорема, которая в ней доказана, сегодня известна как теорема Гёделя о полноте. В то время она была воспринята как знак выполнимости программы Гильберта.
Чтобы понять теорему Гёделя о полноте, мы должны прежде углубиться в теорию математического доказательства по программе Гильберта. Напомним, что согласно ей нужно найти множество аксиом, которые позволили бы доказать все арифметические истины с помощью рассуждений, проверяемых алгоритмически. Но что точно представляет собой арифметика? Каковы истины, которые мы хотим доказать?
Цель моей теории — установить раз и навсегда определенность математических методов.
Давид Гильберт, «О бесконечности»· (1925)
Арифметика — это область математики, в которой говорится о свойствах сложения и умножения натуральных чисел: 1, 2, 3, 4, 5, 6, 7,...; она включает в себя такие понятия, как простые, совершенные, треугольные или четные числа. Теория образована всеми утверждениями (также называемыми предложениями, или высказываниями), связанными с этими понятиями, например «1 + 1 = 2», «2 — четное число», «5 — простое число», «любое число, делящееся на 4, четное» или «сумма двух нечетных чисел дает в результате четное число». Аксиомы, которые искал Гильберт, были бы множеством базовых истин, из которых можно вывести, при уже изложенных условиях, все остальные истинные арифметические утверждения, в том числе упомянутые выше.
С другой стороны, что означает алгоритмическая проверка справедливости рассуждений, доказывающих эти истины? Это означает, что по крайней мере в начале должно быть возможным так запрограммировать компьютер, чтобы за конечное количество шагов он мог определить, является ли доказательство справедливым. В соответствии с этой идеей мы вводим доказательство в машину, она обрабатывает его по предварительно написанной программе и через некоторое время (возможно, долгое, но в любом случае конечное) говорит нам, справедливо рассуждение или в нем содержится ошибка.
В целом проверка правильности математического доказательства — непростая работа, иногда даже для специалистов. Например, когда в 1995 году Эндрю Уайлс представил свое доказательство последней теоремы Ферма, которому он посвятил семь лет, специалисты, его проверявшие, нашли логический пробел — шаг, который, насколько они понимали, не был должным образом обоснован. Уайлс, естественно, этой ошибки не заметил, и ему потребовался год на ее исправление. В конце концов в 1996 году он представил полное доказательство.
Продемонстрируем менее сложный пример. Пусть а и b — два числа, которые мы считаем равными и при этом отличными от нуля. На основе того факта, что а = b, мы можем получить «доказательство» того, что 1 = 2 (для большей ясности пронумеруем логические шаги рассуждения).
1. | а = b | По гипотезе. |
2. | a · b = b · b | Умножили оба члена на Ь. |
3. | a · b = b² | Заменили b · b на b². |
4. | a · b - a² = b² - a² | Вычли а² из обоих частей. |
5. | a · (b - a) = (b + a) · (b - a) | Использовали известные алгебраические равенства. |
6. | a = b + a | Сократили (b - а) в обеих частях. |
7. | a = a + a | Заменили b на а> поскольку числа равны. |
8 | a = 2 · a | Использовали равенство а + а = 2 · а. |
9. | 1 = 2 | Разделили обе части на число а. |
Очевидно, что это рассуждение неверно, но где ошибка? Она находится в переходе от шага 5 к шагу 6. В равенстве
а · (b - а) = (b + а) · (b - а)
мы сокращаем скобки (b - а) и делаем вывод, что а = b + а. Это ошибочно, потому что (b - а) равно 0 (поскольку а = b), а 0 нельзя делить. Если представить это в виде чисел и предположить, например, что а и b равны 2, переход от 5 к 6 соответствует тому, чтобы сказать, что из 2 · 0 = 4 · 0 (что истинно) следует 2 = 4.
Но как мы можем научить компьютер обнаруживать ошибки такого типа? Компьютер — это только машина; он не рассуждает, а слепо следует программе, записанной в его памяти. Для того чтобы компьютер мог проверить правильность математического рассуждения, необходимо перевести это рассуждение в последовательность высказываний, каждое из которых либо аксиома, либо выводится из предыдущих высказываний посредством применения точных и заранее установленных логических правил.
Рассмотрим пример математического доказательства, выраженного таким образом. Для начала нам нужны некоторые аксиомы, которые будут служить нам отправной точкой. В 1889 году, задолго до открытия парадокса Рассела, итальянский математик Джузеппе Пеано предложил набор аксиом, которые (как он предполагал) позволяют доказать все арифметические истины. Эти аксиомы основывались на операциях сложения (+), произведения (·), а также понятии последующего элемента (обозначаемого буквой S).
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.