Трехмерный мир. Евклид. Геометрия - [18]
Во Вселенной геометрия связана с поверхностью, на которой она рассматривается, то есть с геометрическими объектами. Представим, что мы, как современный Архимед, лежим в ванне и рисуем прямые линии на ее стенках: некоторые из них — на дне — будут прямыми в евклидовом смысле слова, другие будут восходящими кривыми (те, что идут со дна ванны вверх по стенкам) и нисходящими (те, что идут по стене от верхнего бортика). Теперь зададимся вопросом: почему некоторые из них могут называться прямыми, а другие нет?
Общая теория относительности Эйнштейна утверждает, что пространство и, следовательно, прямые, которые в нем содержатся, деформируются в присутствии значительных масс или энергий. Представим себе тяжелый свинцовый шар на большом барабане: его мембрана деформируется, то есть изгибается. Если шарик поменьше будет вращаться по краю, то по спирали «упадет» в центр. В пространстве происходит нечто похожее: тела с большой массой, аналогично свинцовому шару, искривляют пространственно-временной континуум и оказывают влияние на другие тела. Пространство подобно земной поверхности, форма которой также неидеальна, и тем не менее никто не отрицает, что в общем поверхность нашей планеты можно назвать шарообразной. Какова же геометрия Вселенной? Тела, обладающие большой массой и большой энергией, локально изменяют пространство, но если брать Вселенную в целом, какова ее геометрия? Можно ли считать ее евклидовой, гиперболической или эллиптической? Ответ надо искать не в математике, потому что математически все эти геометрии имеют право на существование: все они основаны на формальных принципах и обладают внутренней логикой. Ответ кроется в окружающей нас реальности.
Более века назад Карл Фридрих Гаусс задался тем же вопросом, что и мы. Как устроена Вселенная? Какова ее геометрия? Ученый пришел к выводу, что если бы он смог измерить три внутренних угла треугольника, вершинами которого являются три отдаленные друг от друга звезды, то понял бы геометрию Вселенной. Мы знаем, что...
Если сумма трех углов - | >180° |
= 180° | |
<180° |
то геометрия вселенной. | эллиптическая (сферическая) |
евклидова | |
гиперболическая. |
Но расчеты Лобачевского и Фридриха Бесселя (1784- 1846), астронома и друга Гаусса, не дали никаких результатов. В 1981 году американский физик Алан Гут (1947) ввел понятие плотности Вселенной, которая равна отношению массы материи к единице объема. Существует ее критическое значение — ρ>0 = 4 х 10>-27 кг/м>3. Оно определяет геометрию Вселенной и ее последующее развитие (см. таблицу).
Варианты развития Вселенной | ||
Плотность | Геометрия | Будущее |
>ρ>0 | Сферическая | Коллапс |
=ρ>0 | Евклидова | Плавное расширение |
<ρ>0 | Гиперболическая | Резкое расширение |
На данный момент полученное значение равно 10% ρ>0. Таким образом, считается, что Вселенная имеет гиперболическую геометрию и расширяется резко. Слова Галилея обретают новое звучание:
«Философия написана в величественной книге (я имею в виду Вселенную), но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее — треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту».
Видимо, для того чтобы понять устройство Вселенной, необходимо прибегнуть к геометрии. Такое же мнение высказал Исаак Ньютон в своем знаменитом сочинении «Математические начала натуральной философии».
Мы не можем и не должны забывать о влиянии философии на древнегреческую математику. Аристотель, например, уделяет огромное влияние понятию бесконечности в своей «Физике». В самом начале он пишет:
«Мелисс... утверждает, что сущее бесконечно. Следовательно, сущее есть нечто количественное, так как бесконечное относится к [категории] количества, сущность же, а также качество или состояние не могут быть бесконечными иначе как по совпадению... ведь определение бесконечного включает в себя [категорию] количества, а не сущности или качества. Стало быть, если сущее будет и сущностью, и количеством, сущих будет два, а не одно; если же оно будет только сущностью, то оно не может быть бесконечным и вообще не будет иметь величины, иначе оно окажется каким-то количеством».
Но более детальный анализ бесконечности производится в книге III, где Аристотель рассуждает о природе бесконечности, ее существовании и видах. После подробнейших философских рассуждений древний грек заключает, что существует «бесконечное путем прибавления» для чисел (в арифметике) и «бесконечное путем деления» для величин (в геометрии). Оба типа бесконечного существуют потенциально, «в возможности», а не «актуально», в действительности. Другими словами, в науке бесконечности не существует, ни один объект не может считаться бесконечным.
Портрет Евклида на марке Мальдивской Республики (1988).
Аристотель.
В 1975 году математик Джон Плейфэр предложил новую формулировку пятого постулата Евклида;теперь этот постулат известен как аксиома Плейфэра.
Немецкий математик Давид Гильберт в 1886 году.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.