Трехмерный мир. Евклид. Геометрия - [16]
Доказать единственность параллельной можно, приняв за истину евклидову геометрию.
Через точку Р, не лежащую на прямой АВ, всегда можно провести единственную прямую, параллельную данной.
Если бы существовали две прямые, параллельные АВ (вводится дополнительная фигура, воображаемая, поскольку основана на ложной предпосылке), это были бы первая (та, которая образует прямой угол с PQ в точке Р) и PR. Следовательно, угол
Говоря о геометрии, невозможно не задаться вопросом: какова же истинная геометрия природы? Несомненно, одна из целей аксиоматизации состоит в том, чтобы уловить истину сущего. Но, возможно, на самом деле мы просто улавливаем истинность того, что представляем, то есть порождения человеческого разума, необязательно совпадающего с реальностью.
Во времена Евклида были две «настоящие» геометрические науки: «геометрия небес», то есть сферическая геометрия, необходимая для понимания астрономических процессов, так занимавших древнегреческих мыслителей, и «геометрия внутреннего двора», которой занимался Архимед, когда, по легенде, римский солдат поразил его своим мечом. Первую сейчас называют эллиптической геометрией. Она проявляется на поверхности земного шара. В этой геометрии точки определяются так же, а прямые — нет. Если вслед за Архимедом принять за прямую кратчайшую линию, соединяющую две точки, то мы заметим, что в эллиптической геометрии эти прямые обязательно пересекутся. Представим себе ситуацию: два человека начинают идти по прямой по земному шару, достигая в итоге исходной точки. Оба опишут максимальную окружность (то есть ту, которая делит сферу на два равных полушария), а максимальные окружности сферы обязательно пересекаются (на рисунке 3 окружности r и r' пересекаются в точке Р). Следовательно, в этой геометрии через заданную точку невозможно провести ни одну прямую, параллельную данной.
Вторая геометрия — внутреннего двора — работает в пределах ограниченного стенами пространства, в которой можно построить только то, что позволяет песок, покрывающий землю. В этой геометрии через точку Р, не лежащую на прямой r, можно провести бесконечное число параллельных прямых (см. рисунок 4). Так, мы можем провести через Р прямые r', r", r'". Только r" пересекает r внутри двора. Но есть и другие — все прямые, находящиеся внутри угла с вершиной Р и со сторонами, образованными прямыми, исходящими из Р и доходящими до прямой r. Точки пересечения находятся на стенах двора, а не на земле — там их не существует. Следовательно, прямые r и r' не пересекаются и являются параллельными. Прямые, не находящиеся внутри угла с вершиной P, как и его стороны, параллельны r.
Графические построения в такой геометрии, сейчас называемой гиперболической, выглядят так, будто их сделали на седле (рисунок 5). На такой поверхности равносторонний треугольник принимает странный вид, а сумма его углов становится меньше 180°. Параллельные же прямые удаляются друг от друга до бесконечности (или, наоборот, сближаются).
РИС.З
РИС. 4
РИС. 5
Эту геометрию открыли в начале XIX века независимо друг от друга венгерский ученый Янош Бойяи (1802-1860) и русский математик Николай Лобачевский (1792-1856). Уже в 1823 году Лобачевский начал сомневаться в том, что евклидова геометрия единственно возможная, причем именно потому, что все попытки доказать единственность параллельной прямой, исходя из других постулатов Евклида, были напрасны.
В 1829 году появилась статья Лобачевского «О началах геометрии», легшая в основу так называемой неевклидовой геометрии. В ней изложены принципы первой геометрии, построенной на гипотезе, противоречащей пятому постулату Евклида: через точку С, не лежащую на прямой АВ, можно провести более одной параллельной прямой, лежащей в плоскости АВС и не пересекающей АВ. На основе этого переформулированного постулата Лобачевский создал гармоничную и непротиворечивую геометрию.
До сих пор не было дано никакого строгого доказательства его правоты.
Николай Лобачевский о пятом постулате в 1823 году
Тем не менее авторитет Евклида и «Начал» в математическом мире был так высок, что Лобачевский решил не придавать большого значения новой геометрии и в первые годы чуть ли не стыдясь называл ее «воображаемой». За 20 лет, между 1835 и 1855 годами, он по меньшей мере три раза пересматривал свою новую систему. Шотландский писатель и математик Эрик Белл в своей знаменитой книге «Творцы математики» (1937) писал:
«В течение 2200 лет в некотором смысле верилось, что Евклид своей системой геометрии открыл абсолютную истину или необходимый способ человеческого познания. Созданное Лобачевским было настоятельным доказательством ошибочности этого верования. Смелость этого вызова и порожденный им успех вдохновили математиков и ученых вообще бросить вызов другим «аксиомам» или принятым «истинам» (например, «принципу» причинности), которые в течение столетий казались так же необходимыми для направления мышления, как постулат Евклида, до того как Лобачевский отбросил его.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.