Трехмерный мир. Евклид. Геометрия - [19]
Бесконечность является только порождающим процессом. Актуальную бесконечность нельзя принять как возможную идею идеального мира и тем более ее нельзя применить к математике. Следовательно, остается только потенциально бесконечное, то есть возможность постоянно продолжать что-то, но всегда на ограниченное число ступеней. Этот процесс может никогда не кончаться: бесконечное всегда останется в области возможного. Аристотель очень убедителен, когда говорит об использовании математиками актуальной бесконечности:
«Наше рассуждение, отрицающее актуальность бесконечного в отношении увеличения, как не проходимого до конца, не отнимает у математиков их исследования, ведь они теперь не нуждаются в таком бесконечном и не пользуются им: [математикам] надо только, чтобы ограниченная линия была такой величины, как им желательно, а в том же отношении, в каком делится самая большая величина, можно разделить какую угодно другую. Таким образом, для доказательств бесконечное не принесет им никакой пользы, а бытие будет найдено в [реально] существующих величинах».
Для понимания методологии Евклида очень важно ответить на вопрос: прав ли Аристотель, когда утверждает, что его философия бесконечности не относится к математике? Насколько строго Евклид придерживается ограничений, установленных Аристотелем, и в каких случаях он их нарушает? Евклид считает, что прямые — это прямые отрезки, а их концы — точки, то есть прямые конечны. Он дает определение именно отрезкам и рассматривает только их. В пятом постулате он избегает говорить о параллелизме, который, как мы увидим дальше, подразумевает существование бесконечности. В разделе по арифметике, в частности в предложении 20 книги IX, он говорит:
Простых чисел существует больше всякого предложенного количества простых чисел.
Такая формулировка позволяет Евклиду применить прямое доказательство, а если бы он воспользовался понятием актуальной бесконечности, то вынужден был бы прибегнуть к непрямому доказательству. В этом заключается одна из трудностей, перед которой нас часто ставит использование понятия бесконечности: приходится прибегать к косвенным доказательствам с помощью метода доведения до абсурда. Рассмотрим разницу между двумя типами доказательств на примере утверждения Евклида, процитированного выше. Начнем с прямого. Представим, что у нас есть бесконечное количество простых чисел: а, b,..., т. Возьмем число N = (а х b х ... x m) + 1. Если N— простое число, значит есть простое число, отличное от а, b, ..., m. Напротив, если N — составное число, то его делителем будет простое число (книга VII, предложение 32), которое должно быть отличным от каждого из ряда простых чисел а, b, ..., m.
Теперь обратимся к непрямому доказательству. Переформулируем предложение 20 следующим образом:
Ряд простых чисел бесконечен.
Если принять за истину обратное, то ряд простых чисел а, b, ..., m ограничен и содержит в себе их все. Но если мы повторим предыдущее доказательство, то получим число, отличное от а, b, ..., m, значит, последовательность не включает в себя все числа.
Однако Евклид не мог совершенно избежать использования актуальной бесконечности. Например, он пишет:
Книга I, определение 23. Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны не встречаются.
РИС. 6
РИС. 7
В этом утверждении прямо говорится о неограниченности, то есть подразумевается актуальная бесконечность. В той же первой книге это слово встречается еще в двух предложениях: в формулировке и в доказательстве.
Книга I, предложение 12. К данной неограниченной прямой из заданной точки, на ней не находящейся, можно провести перпендикулярную прямую (см. рисунок 6).
Книга I, предложение 22. Из трех прямых, которые равны трем данным, можно составить треугольник (см. рисунок 7).
Что заставляет Евклида бросать вызов аристотелевскому ограничению на использование бесконечности в действительности? Ответ прост. Он хочет, чтобы его утверждения были действительны в общем смысле, то есть не зависели от конкретного рисунка. В первом случае прямая, к которой мы хотим провести перпендикуляр, должна быть достаточно длинной, чтобы гарантировать, что исходная точка этого перпендикуляра будет над ней независимо от конкретной точки на рисунке. Во втором случае три стороны треугольника должны находиться на и над прямой, которая, соответственно, должна быть настолько длинной, чтобы вмещать их независимо от длин сторон, а для этого она должна быть бесконечной. Значит, в некотором смысле ограничение, установленное Аристотелем, отнимает что-то у математиков. Девять веков спустя Прокл в комментарии к первой книге «Начал» выразил свое мнение по этому поводу, анализируя предложение 12:
«Но надо исследовать теоретически, как полагается беспредельное в цельном. Ясно, что если имеется неограниченная прямая, то неограниченна и плоскость, содержащая ее, причем на деле, поскольку задача предложена. [...] Остается считать, что беспредельное существует лишь в воображении, но беспредельное не мыслится воображением. Ведь мыслить — значит придавать мыслимому форму и предел [...] Так что беспредельное относится не к мышлению, но к неопределенному для мысли; и, будучи немыслимым, несоразмерным природе и непостижимым для мысли, оно и называется беспредельным. [...] Воображение порождает его в силу своей нераздельной способности непостижимого порождения и представляет беспредельное по его немыслимости. [...] Так что когда мы полагаем в воображении данную неограниченную прямую, подобно всем прочим геометрическим фигурам, [...] не удивительно ли, как эта линия может быть беспредельной на деле и как она, будучи неопределенной, связана с определенными понятиями? С другой стороны, разум, из которого исходят рассуждения и доказательства, не пользуется беспредельным в науках, [...] беспредельное берется не ради беспредельного, но ради определенного. Ведь если данная точка не лежит на продолжении ограниченной прямой и не отстоит от этой прямой так, что никакая часть прямой не лежит под точкой, у нас не будет никакой потребности в беспредельном. В этом случае пользуются ограниченным, как не подлежащим проверке и бесспорным».
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.