Том 9. Загадка Ферма. Трехвековой вызов математике - [31]

Шрифт
Интервал



Визит короля Людовика XIV в Парижскую академию наук в 1671 году. Гравюра Себастьяна Леклерка из книги «Мемуары по естественной истории животных».


Несколько миллиардов лет назад Веста потеряла 1 % массы вследствие удара, и множество осколков упали на Землю в виде метеоритов. Ольберс также размышлял над вопросом, почему ночное небо такое темное, несмотря на то что его освещает бесконечное множество звезд, от света которых должно быть светло как днем. Этот парадокс позднее получил название парадокса Ольберса. Когда он узнал о премии Парижской академии, то обратился к своему другу Карлу Фридриху Гауссу и предложил тому стать соискателем этой премии.



Немецкий астроном и врач Генрих Ольберс. Литография Рудольфа Зурландта.


21 марта 1816 года Гаусс ответил: «Признаюсь, что теорема Ферма сама по себе не представляет для меня большого интереса, так как я с легкостью могу сформулировать множество подобных теорем, которые нельзя будет ни доказать, ни опровергнуть». Несмотря на это, Гаусс тоже работал над решением, что следует из его личных записей, где приведены доказательства для n = 3 и n = 5. Неизвестно, пытался ли Гаусс доказать теорему до того, как Ольберс предложил ему заняться этой темой. Быть может, осознав трудность задачи, он предпочел отклонить приглашение и продолжить работу в одиночку, надеясь получить какой-то значимый результат, достойный публикации. Возможно, он действительно не уделил особого внимания этой задаче и предпочел обратиться к более интересным темам.

Несмотря на слова Гаусса, теорема не давала покоя великим математикам того времени, и они усердно занимались поисками доказательства. Теперь на кону стояла не только премия академии, но также известность и слава. Наступил срок подачи заявок, но доказательство не удалось найти никому! Неудивительно, что в академии совершенно не ожидали такого результата. До учреждения этой премии столь крупный ученый, как Эйлер, пытался найти доказательство, но ему удалось это сделать только для n = 3 примерно в 1760 году. Как уже говорилось в предыдущей главе, возможно, доказательство для этого случая нашел еще Ферма с помощью своего метода бесконечного спуска. Но теперь математическое сообщество могло бы спать спокойно, зная, что доказательство строго оформил и записал Эйлер. Было очевидно, что куб нельзя представить в виде суммы двух кубов, но что можно сказать о бесконечном множестве всех остальных степеней?

Привлекательность теоремы в научном сообществе неуклонно росла. Немецкий математик Иоганн Петер Густав Лежён-Дирихле (1805–1859) и француз Адриен Мари Лежандр (1752–1833) в 1825 году независимо друг от друга нашли доказательство для n = 5. В 1832 году Дирихле сделал еще один шаг и доказал теорему Ферма для n = 14. В 1839 году французГабриель Ламе (1795–1870) вошел в историю, доказав теорему для n = 7. Восемь лет спустя он объявил, что ему удалось найти доказательство в общем виде, но он ошибался. Доказать теорему Ферма для нескольких частных случаев удавалось многим математикам. Учитывая, что простых показателей степени бесконечно много, получается, что доказательство теоремы должно было занять бесконечно много времени?



Портрет немецкого математика Иоганна Петера Густава Лежёна-Дирихле.


Неожиданное действующее лицо

Надежда на то, что несколько случаев можно объединить в рамках одного доказательства, появилась благодаря усилиям француженки Софи Жермен (1776–1831) — возможно, величайшей женщины-математика всех времен. В 1823 году она доказала, что если р и 2р + 1 — два простых числа, больших 2, то х + у>р  = z>p не имеет примитивных решений (то есть взаимно простых), в которых xyz не делилось бы на р. Согласно правилам академии, женщины не могли подавать свои работы лично, поэтому результаты Софи Жермен были переданы научному сообществу Лежандром и его коллегой Огюстеном Луи Коши.

Как уже говорилось в предыдущей главе, если бы теорему удалось доказать для всех показателей степени, являющихся простыми числами, то она была бы доказана для всех натуральных. Аналогично нетрудно видеть, что если целые решения х, у, z имеют общий множитель, то, поделив обе части на этот множитель, мы снова получим целое решение. Следовательно, доказательство теоремы для примитивных решений является ее общим доказательством для всех случаев. Начиная с работ Жермен стали различать два случая на множестве решений. Первый случай — ни х, ни у, ни z не делятся на р. Второй случай — либо х, либо у, либо z делится на р. Как говорил Лежандр, «одним росчерком пера» доказательство Жермен превращалось в доказательство теоремы Ферма для первого случая, то есть для огромного множества чисел. Для тех чисел, которых не хватало, чтобы доказать теорему для всех чисел меньше 100, доказательство привел сам Лежандр.



Письмо Софи Жермен математику Жозефу Луи Лагранжу. Благодаря этой французской женщине-математику в доказательстве последней теоремы Ферма был сделан большой шаг вперед.

* * *

РЕШЕНИЕ СОФИ

Софи Жермен родилась в Париже в 1776 году. Она была дочерью преуспевающего торговца шелком. В семье регулярно обсуждали политику и философию. В 13 лет Софи прочитала знаменитую историю о смерти Архимеда от рук римского солдата. Впечатленная девочка тоже решила стать математиком. В разгар французской революции родители держали ее взаперти почти восемь лет, чтобы защитить ее. Девушка воспользовалась случаем и начала изучать математику в родительской библиотеке. Софи днем и ночью украдкой читала книги Ньютона и Эйлера.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.