Том 38. Измерение мира. Календари, меры длины и математика - [14]
Математик и астроном Клавдий Птолемей, живший во II веке (ок. 100 — ок. 170) работал в Александрийской библиотеке и музее. Именно он разработал методологию практической астрономии, дошедшую до XVI века. Его важнейший труд «Великое математическое построение по астрономии в 13 книгах», или «Альмагест», стал первым, где приводилось полное, подробное и системное описание движения всех небесных тел с точки зрения математики. Птолемей считал астрономические гипотезы истинными только в том случае, если для них выполнялись определенные физические принципы. Здесь имеется в виду не только принцип равномерного кругового движения, но и другие, имеющие отношение к аристотелевой физике, в частности геоцентризм, принцип расположения неподвижных звезд на одной сфере и принцип несуществования пустоты.
В своей теории движения планет Птолемей применил геометрические методы и поставил во главу угла точность расчетов, а не соблюдение реальных физических траекторий планет и принципов аристотелевой физики. Модели, составленные Птолемеем, позволяли прогнозировать положение планет.
* * *
ТЕОРИЯ ЭКСЦЕНТРИКОВ (ЭКСЦЕНТРИЧЕСКОГО КРУГА)
Если считать Землю (3) неподвижной и поместить планету (П) на круговую эксцентрическую орбиту, то есть орбиту, центр которой (Ц) не совпадает с Землей, можно объяснить, почему планеты проходят равные дуги за неодинаковые промежутки времени. При измерении с Земли видимая угловая скорость планеты, находящейся на эксцентрической орбите, в точке, ближайшей к Земле (перигелии), — больше, в точке, наиболее удаленной от Земли (афелии), — меньше, как показано на иллюстрации. Так, если планета движется с постоянной угловой скоростью w относительно Ц, то она пройдет расстояние отточки П>1 до П>2 за то же время, что и расстояние от П>3 до П>4, однако дуги П>1П>2 и П>3П>4 из точки 3 будут видны под разными углами. Этот метод позволил Гиппарху объяснить, почему скорость видимого движения Солнца по эклиптике в течение года меняется.
* * *
Теория гомоцентричных сфер была забыта, так как она не позволяла объяснить изменение яркости планет. В III веке до н. э. начали использоваться другие теории, в которых основную роль играла геометрия, а именно теория эксцентриков (эксцен трического круга) и теория эпициклов и деферентов. Понятия эпицикла и деферента, примененные Гиппархом, ввел Аполлоний Пергский (ок. 262 г. до н. э. — ок. 190 г. до н. э.). В «Альмагесте» используются, по сути, три математических понятия: эксцентрики (планеты располагались на орбитах, центр которых не совпадал с Землей), система эпициклов и деферентов (планеты располагались на окружностях — эпициклах, центры которых двигались вдоль других окружностей — деферентов, а в центре деферентов находилась Земля) и эквант (точка внутри деферента, отличная от его центра, относительно которой центр эпицикла описывает одинаковые углы за равные промежутки времени). С их помощью Птолемей не только объяснил все результаты наблюдений, но и смог предсказать положение планет в будущем.
Эпицикл и деферент. Планета (Р) находится на эпицикле и вращается с востока на запад (или наоборот) со скоростью w>2. Одновременно с этим центр эпицикла (С) вращается с запада на восток со скоростью w>1.
Астрономия Птолемея представляла собой не цельную систему, а совокупность частных решений для отдельных планет. Его система противоречила некоторым важным принципам физической картины, описанной Аристотелем. Возникло несоответствие между космологией — физической системой, которая объясняла мир в целом, однако не содержала математического описания наблюдаемых явлений, и очень точной математической астрономией, которая объясняла результаты наблюдений, но никак физически не описывала движение небесных тел.
* * *
СИСТЕМА ЭПИЦИКЛОВ И ДЕФЕРЕНТОВ. ОБЪЯСНЕНИЕ ПОПЯТНОГО ДВИЖЕНИЯ
Система эпициклов и деферентов позволяет объяснить попятное движение и изменение яркости планет, понимаемое как изменение расстояний от планет до Земли. Рассмотрим идеальный случай, в котором угловая скорость центра эпицикла С относительно Земли в три раза больше угловой скорости планеты относительно С(w>2 = Зw>1). Траектория движения планеты при наблюдении с Земли будет выглядеть так, как показано на иллюстрации, и планета будет описывать три петли, всякий раз приближаясь к Земле. Планета будет совершать попятное движение относительно звездного неба и будет блестеть ярче, потому что будет находиться ближе к Земле. Эта упрощенная модель достаточно точно описывает движение планеты Меркурий.
* * *
Гелиоцентрическая модель, предложенная Аристархом Самосским в III веке до н. э., подвергалась критике по тем же причинам, по которым начиная от Аристотеля и Птолемея и до Коперника критике подвергались все модели, которые не были геоцентричными. Во-первых, физические доводы о неподвижности Земли не подвергались сомнениям, во-вторых, оценки размера Вселенной были ошибочными из-за отсутствия параллакса звезд.
Новая физика возникла как раз из необходимости дать ответ на критику астрономии Коперника. Эти возражения, по сути, были идентичны аргументам Аристотеля и Птолемея о невозможности движения Земли и заключались в том, что движение Земли должно было вызывать следующие явления. Во-первых, тела, не скрепленные с Землей, были бы отброшены вдаль центробежной силой, вызванной огромной скоростью вращательного движения; во-вторых, все тела, не скрепленные с Землей или временно отделенные от нее, например облака, птицы, брошенные вверх предметы и так далее, в результате этого движения запаздывали бы относительно поверхности Земли. Так, камень, брошенный с башни вниз, не падал бы возле нее, тело, брошенное вертикально вверх, не падало бы в исходную точку, и так далее.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.