Том 38. Измерение мира. Календари, меры длины и математика - [13]
О жизни Аристарха Самосского (ок. 310 г. до н. э. — ок. 230 г. до н. э.), который был учеником Стратона из Лампсака, третьего главы Ликея, известно немногое. Все сведения о нем взяты из его книги «О величинах и расстояниях Солнца и Луны» и упоминаний более поздних авторов. Его считали авторитетным астрономом, называли математиком и отмечали его обширные знания в геометрии, астрономии, музыке и других науках. Его современник Архимед (ок. 287 г. до н. э. — ок. 212 г. до н. э.) в своем труде «Исчисление песчинок» утверждает: Аристарх предполагал, что Солнце и сфера, на которой закреплены звезды, неподвижны, а Земля вращается вокруг Солнца по кругу.
Книга «О величинах и расстояниях Солнца и Луны» — это астрономический трактат, в котором с помощью геометрических методов рассчитаны соотношения расстояний между небесными телами. В современном языке эти соотношения обозначаются синусами углов. Свои геометрические методы Аристарх позаимствовал из теории пропорций Евдокса, изложенной в книге V «Начал» Евклида. Он применил и другие соотношения, которые мы относим к тригонометрии, считая их известными или тривиальными. Он сравнил расстояние Земля — Солнце с расстоянием Земля — Луна и вычислил, что первое почти в 20 раз больше второго (истинное соотношение между этими расстояниями намного больше — 390:1).
Почему последователи Аристарха не приняли его гелиоцентрическую модель и ее вновь предложил лишь Николай Коперник в своем труде «О вращении небесных сфер» (1343)? Чтобы ответить на этот вопрос, нужно перенестись из XXI века в III век до н. э. Утверждать, что Земля движется, значило попрать древнее учение, здравый смысл и физику Аристотеля. Кроме того, если бы Земля двигалась, то наблюдался бы параллакс звезд, чего отмечено не было. Помимо этого, другие возможные преимущества этой модели (так, с ее помощью можно было объяснить изменение блеска планет) вскоре были сведены на нет при помощи новых методов, не противоречивших традиционной космологии.
* * *
ОТНОШЕНИЕ РАССТОЯНИЙ «ЗЕМЛЯ — ЛУНА» И «ЗЕМЛЯ — СОЛНЦЕ» ВЫЧИСЛЕННОЕ АРИСТАРХОМ САМОССКИМ
В III веке до н. э. Аристарх Самосский вычислил, насколько дальше Земля располагается от Солнца, чем от Луны, а также определил их относительные размеры. Для этого он использовал следующее соотношение: треугольник ЗЛС, в вершинах которого находятся Земля, Солнце и молодая Луна, прямоугольный, так как угол Земля — Луна — Солнце равен 90°. Далее он измерил угол между Солнцем и Луной и принял его равным 87°. Так как сумма углов треугольника равна 180°, β = 3°.
Таким образом он смог вычислить отношение расстояний d(3, С)/d(3, Л) путем математических рассуждений. В упрощенном виде и в современной нотации суть рассуждений Аристарха записывается так:
cos 87° = d(T,L)/d(T,S),
где d(3, С) — расстояние от Земли до Солнца, d(3, Л) — расстояние от Земли до Луны:
d(T,S) = d(T,L)/cos 87°
так как 1/cos87°равняется примерно 19, имеем:
d(T,S) ~= 19d(T,L).
Кроме того, так как Луна и Солнце наблюдаются с Земли под одним и тем же углом, равным половине градуса, отношение их диаметров будет таким же:
диаметр Солнца = 19 диаметров Луны.
Этот математический метод остроумен и точен, однако Аристарх допустил ошибку при измерении угла α: он равен не 87°, а 89°52’ (Солнце расположено примерно в 390 раз дальше от Земли, чем Луна).
* * *
Гиппарх Никейский (ок. 190 г. до н. э. — ок. 120 г. до н. э.) применил новые измерительные приборы и первым количественно оценил неравномерности в движении Солнца и Луны. Он стал образцом для подражания для всех астрономов Александрии: пытаясь увязать принцип кругового движения с результатами наблюдений, он отдавал безоговорочный приоритет последним. Программа астрономических исследований Гиппарха выглядела так: астроном должен определить число круговых орбит небесных тел, их размеры и положение, а также скорость кругового движения, чтобы с помощью геометрических методов и численных расчетов показать, что предложенная система объясняет результаты наблюдений, позволяет делать точные количественные прогнозы и составлять прогнозные таблицы.
Гиппарх отметился важными результатами наблюдений, составил более точную карту звездного неба, систематизировал множество результатов, полученных вавилонскими астрономами, а также открыл предварение равноденствий (постепенное смещение точек равноденствия, или точек пересечения небесного экватора с эклиптикой, в силу которого равноденствия наблюдались раньше).
Во времена Гиппарха уже была известна длина окружности Земли — ее вычислил Эратосфен (об этом мы расскажем в главе 4). Зная длину окружности Земли, Гиппарх смог вычислить расстояния от нее до Солнца и Луны. Применив собственные методы и подходы, аналогичные подходам Аристарха, Гиппарх определил соотношение размеров Земли и Луны. Он наблюдал за тенью Земли на силуэте Луны в различных фазах лунного затмения и, приняв во внимание, что Солнце находится очень далеко от Луны и от Земли, вычислил: диаметр Земли в 8/3 раза больше диаметра Луны (а не в 2 раза, как рассчитал Аристарх). Он получил, что расстояние до Солнца составляет 490 радиусов Земли, а расстояние до Луны — от 39 до 67 радиусов Земли (реальное расстояние составляет примерно 60 радиусов Земли).
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.