Том 35. Пока алгебра не разлучит нас. Теория групп и ее применение - [15]

Шрифт
Интервал

SR совпадает с R(RSR). Но мы знаем, что RSR = S, следовательно, R>2SR = RS. Аналогично:

SR>2=(SR)R=(R>2S)R=R(RSR)=RS,

50

ведь мы уже доказали, что SR = R2S. Я уже провел самые сложные вычисления, и все остальные расчеты вы можете выполнить самостоятельно. Попробуйте и поймете, удалось ли вам понять описанный метод. Как бы то ни было, важно, что эта таблица содержит всю информацию о множестве преобразований, оставляющих треугольник неизменным: что это за преобразования, каковы их композиции, какой порядок они имеют (то есть сколько раз их нужно выполнить последовательно, чтобы получить тождественное преобразование).

Таблица преобразований треугольника.

ЛЕВИ-СТРОСС: Господин Вейль, возможно, это прозвучит глупо, но пока вы заполняли таблицу, я вспомнил «Меланхолию I» Дюрера, одну из трех его «Мастерских гравюр», где изображена крылатая фигура, погруженная в раздумья о геометрии. Как вам известно, на гравюре можно видеть магический квадрат. Сумма чисел во всех его строках, столбцах, а также на диагоналях и некоторых других линиях одинакова и равна 34. Имеет ли этот магический квадрат что-то общее с вашими таблицами умножения?

51

ВЕЙЛЬ: Боюсь, что почти ничего. Важнейшее отличие между ними заключается в том, что в нашей «таблице умножения» все строки и столбцы содержат одни и те же элементы, а в магическом квадрате числа никогда не повторяются. В первой строке квадрата Дюрера записаны числа 16, 3, 2 и 13, во второй — 9, 10, 11 и 8: квадрат красив как раз тем, что все числа в нем различны. Наша таблица скорее напоминает латинский квадрат: символы содержатся в каждой строке и в каждом столбце ровно один раз. Пример:

Далее я объясню, что таблица умножения для группы с конечным числом элементов всегда будет латинским квадратом.

ЛЕВИ-СТРОСС: Прекрасно. Давайте вернемся к группам.

ВЕЙЛЬ: Я привел столь подробный пример с преобразованиями треугольника для того, чтобы теперь мы смогли вместе определить их внутреннюю структуру, то есть то общее, что остается, когда мы отбросим все частные случаи. Не будем откладывать дело в долгий ящик и начнем с того, что избавимся от треугольника.

Напомню, что предмет нашего изучения — не фигура сама по себе, а ряд ее преобразований, которые мы обозначили через R, S и так далее. Заменим их произвольным множеством элементов (конечным или бесконечным), которое будем обозначать буквой G. В примере с преобразованиями треугольника мы можем объединить два движения так, что получится третье, которое будет обладать теми же свойствами. Сохраним это условие: для каждой пары элементов G должна быть определена операция, результат которой также будет принадлежать G. Ранее мы обозначали эту операцию, просто записывая два члена рядом. Теперь введем для обозначения этой операции какой-нибудь новый символ, например *. Так, а * b будет обозначать результат умножения а на b согласно свойствам групповой операции.

На этом мы могли бы остановиться, но подобная структура не содержит достаточно ограничений, чтобы гарантировать наличие некоторых интересных свойств.

Если мы рассмотрим множество всего из трех букв, к примеру С = {х, y, z}, то найдется 19 683 разных способа определить на этом множестве операцию, которая сопоставит любым двум элементам третий. Это слишком много! Необходимо, чтобы операция * обладала некоторыми свойствами. Вернемся к примеру с преобразованиями треугольника. Напомню, что композиция любого преобразования с тождественным преобразованием I оставляла исходное преобразование неизменным.

52

Аналогично, нам нужен нейтральный элемент е такой, что равенства а*е = е*а = а будут верными для любого элемента а множества G. С учетом нейтрального элемента в примере с множеством {х, у, z} число возможных операций сократится до 81 — почувствуйте разницу! Крайне важную роль в расчетах сыграла возможность располагать скобки в произвольном порядке, поэтому мы введем новое требование: при операции над любыми тремя элементами результаты (а * b) * с и а * (b * с) должны быть равны. Это свойство называется ассоциативностью.


Можно было бы сказать, что группа — это множество с определенной на нем ассоциативной операцией, содержащее нейтральный элемент.


Между прочим, такая структура действительно существует и называется моноидом. Приведенное определение могло бы стать определением группы, но преобразования треугольника обладают еще одним свойством, которое будет интересно обобщить. Это свойство обратимости, согласно которому для любого преобразования всегда найдется другое, которое вернет треугольник в исходное положение. Допустим, мы применили поворот R. Если теперь мы применим R>2, получим R>2R = R>3 = I. Таким образом, преобразование R>2 обратно преобразованию R. В других случаях движение может быть обратно самому себе, как, например, симметрии S, RS и SR. Существование обратной операции означает, что для любого элемента а множества G всегда найдется другой элемент b такой, что а * b и b * а будут равны нейтральному элементу.

Часто вместо b записывают а>-1. Так определяется группа. Чуть позже мы покажем, что определить группу на множестве {х, у, z) можно единственным способом.


Еще от автора Хавьер Фресан
Том 22. Сон  разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления.


Рекомендуем почитать
Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.