Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [30]

Шрифт
Интервал

Философский смысл проблемы таков: поскольку хаос подразумевает чувствительность к начальным условиям, неизбежные ошибки при определении начальных условий будут возрастать экспоненциально, и в результате практические прогнозы, составленные на основе хаотической модели, обязательно будут ошибочными. Возникает вопрос: как можно использовать моделирование, если в общем случае ошибка будет очень велика?

Ответ таков: хаотические системы могут оказаться невероятно полезными при прогнозировании, однако сам хаос по своей природе накладывает серьезные ограничения на возможность составления прогнозов.

Однако динамику хаотических систем можно спрогнозировать в краткосрочном периоде. А после этого, сколь бы точно мы ни измерили начальные данные, мы неизбежно допустим ошибку, которая впоследствии существенно возрастет, и с определенного момента динамика хаотической системы станет непредсказуемой.

Но эта непредсказуемость не проявляется мгновенно. Если составить прогнозы в среднесрочном и долгосрочном периоде нельзя, то, получается, наука бесполезна? Вовсе нет, ведь помимо количественных оценок существуют и качественные. Процитируем Пуанкаре, который в свое время объяснил суть вопроса с присущей ему четкостью:

«Физик или инженер скажет нам: „Можете ли вы проинтегрировать это дифференциальное уравнение? Результат понадобится мне через восемь дней, чтобы закончить проект здания в срок". Мы ответим: „Это уравнение не относится ни к одному из интегрируемых типов, и вам прекрасно известно, что других типов не существует". „Да, это мне известно, но для чего же тогда нужны вы, господин математик?" Ранее уравнение считалось решенным только тогда, когда его решение можно было представить с помощью конечного числа известных функций, однако найти решение в таком виде можно едва ли для одного процента уравнений. Мы всегда можем решить любую задачу „качественно", то есть попытаться определить общий вид кривой, описывающей неизвестную функцию».

Хаос помогает увидеть взаимосвязи, формы и структуры там, где никто не подозревает. В хаосе присутствует порядок: случайность описывается геометрически.

При подтверждении научной теории следует придавать большее значение геометрии, а не результатам экспериментов, то есть не количественным, а качественным факторам. Актуальный пример этому мы приведем в следующих главах, где будем говорить о глобальном изменении климата: метеорологи и климатологи часто жертвуют точностью прогноза, чтобы понять общую картину. Они ежедневно сталкиваются с нелинейными задачами и вынуждены делать выбор: составить точную модель, позволяющую делать прогнозы (существование такой модели по определению невозможно), или предпочесть ей упрощенную модель, чтобы рассмотреть явление в общих чертах. Цель науки — не только прогнозирование, не только поиск набора эффективных рецептов, но и понимание природы вещей.

К примеру, Декарт своей теорией вихрей и движущейся материи объяснял всё, но не предсказывал ничего. Ньютон, напротив, своими законами и теорией тяготения рассчитал всё, но не объяснил ничего. История подтвердила правоту Ньютона, а измышления Декарта отошли в область фантазий. На протяжении многих веков на первый план выдвигалась именно возможность составления прогнозов. Ньютоновская теория тяготения одержала верх над декартовой теорией вихрей, низвергнув ее в небытие. С математическими моделями теории хаоса происходит то же самое, что и с теориями Декарта: они имеют качественный характер и не могут применяться для составления прогнозов или как руководство к действию, а служат скорее для описания и понимания явлений природы.

Если математика и физика прошлого изучали круги и часовые механизмы, то математика и физика наших дней интересуются фракталами и облаками.

Глава 4. Математическое описание глобального изменения климата

То, что можно полностью контролировать, никогда не бывает полностью реальным; то, что реально, никогда не бывает полностью контролируемым.

Владимир Набоков

Если бы человечество могло составить список самых насущных проблем третьего тысячелетия, одной из них наверняка стало бы глобальное изменение климата. Это многогранная задача, которая имеет не только научный, но, как вы увидите далее, экономический и политический аспект. Мы рассмотрим эту проблему с точки зрения математики, поскольку математика хаоса играет в ней очень важную роль.


Математика и экология

Математическая экология — раздел математики, пребывающий в более чем почтенном возрасте: он «повзрослел» еще два столетия назад, в XIX веке. В то время многие ученые стали применять математические методы для изучения взаимоотношений между живыми организмами и окружающей средой. Мы уже знакомы с некоторыми из этих ученых, в частности с Пьером Франсуа Ферхюльстом, который описал логистическое отображение для моделирования динамики численности определенных популяций. К числу этих ученых принадлежал и итальянский математик и физик Вито Вольтерра (1860–1940), известный тем, что сформулировал систему нелинейных дифференциальных уравнений, описывавших динамику биологической системы, в которой между собой взаимодействовали всего два вида живых существ — хищники и жертвы. Однако математика оказалась полезной не только при изучении динамики численности популяций, но и, уже в XX веке, при моделировании погоды и климата — двух систем, элементами которых являемся мы, люди. Глобальное изменение климата представляет собой междисциплинарную задачу: ее решением занимаются климатологи, метеорологи, физики, геологи, биологи, экономисты. Климатическая система относится к сложным системам и состоит из пяти подсистем: атмосферы (воздуха), гидросферы (воды), литосферы (земли), криосферы (льда) и биосферы (живых организмов). Бесконечную сложность окружающей среды нельзя понять, не изучив множество связей между экосистемами Земли.


Рекомендуем почитать
Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.