Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление - [30]
Философский смысл проблемы таков: поскольку хаос подразумевает чувствительность к начальным условиям, неизбежные ошибки при определении начальных условий будут возрастать экспоненциально, и в результате практические прогнозы, составленные на основе хаотической модели, обязательно будут ошибочными. Возникает вопрос: как можно использовать моделирование, если в общем случае ошибка будет очень велика?
Ответ таков: хаотические системы могут оказаться невероятно полезными при прогнозировании, однако сам хаос по своей природе накладывает серьезные ограничения на возможность составления прогнозов.
Однако динамику хаотических систем можно спрогнозировать в краткосрочном периоде. А после этого, сколь бы точно мы ни измерили начальные данные, мы неизбежно допустим ошибку, которая впоследствии существенно возрастет, и с определенного момента динамика хаотической системы станет непредсказуемой.
Но эта непредсказуемость не проявляется мгновенно. Если составить прогнозы в среднесрочном и долгосрочном периоде нельзя, то, получается, наука бесполезна? Вовсе нет, ведь помимо количественных оценок существуют и качественные. Процитируем Пуанкаре, который в свое время объяснил суть вопроса с присущей ему четкостью:
«Физик или инженер скажет нам: „Можете ли вы проинтегрировать это дифференциальное уравнение? Результат понадобится мне через восемь дней, чтобы закончить проект здания в срок". Мы ответим: „Это уравнение не относится ни к одному из интегрируемых типов, и вам прекрасно известно, что других типов не существует". „Да, это мне известно, но для чего же тогда нужны вы, господин математик?" Ранее уравнение считалось решенным только тогда, когда его решение можно было представить с помощью конечного числа известных функций, однако найти решение в таком виде можно едва ли для одного процента уравнений. Мы всегда можем решить любую задачу „качественно", то есть попытаться определить общий вид кривой, описывающей неизвестную функцию».
Хаос помогает увидеть взаимосвязи, формы и структуры там, где никто не подозревает. В хаосе присутствует порядок: случайность описывается геометрически.
При подтверждении научной теории следует придавать большее значение геометрии, а не результатам экспериментов, то есть не количественным, а качественным факторам. Актуальный пример этому мы приведем в следующих главах, где будем говорить о глобальном изменении климата: метеорологи и климатологи часто жертвуют точностью прогноза, чтобы понять общую картину. Они ежедневно сталкиваются с нелинейными задачами и вынуждены делать выбор: составить точную модель, позволяющую делать прогнозы (существование такой модели по определению невозможно), или предпочесть ей упрощенную модель, чтобы рассмотреть явление в общих чертах. Цель науки — не только прогнозирование, не только поиск набора эффективных рецептов, но и понимание природы вещей.
К примеру, Декарт своей теорией вихрей и движущейся материи объяснял всё, но не предсказывал ничего. Ньютон, напротив, своими законами и теорией тяготения рассчитал всё, но не объяснил ничего. История подтвердила правоту Ньютона, а измышления Декарта отошли в область фантазий. На протяжении многих веков на первый план выдвигалась именно возможность составления прогнозов. Ньютоновская теория тяготения одержала верх над декартовой теорией вихрей, низвергнув ее в небытие. С математическими моделями теории хаоса происходит то же самое, что и с теориями Декарта: они имеют качественный характер и не могут применяться для составления прогнозов или как руководство к действию, а служат скорее для описания и понимания явлений природы.
Если математика и физика прошлого изучали круги и часовые механизмы, то математика и физика наших дней интересуются фракталами и облаками.
Глава 4. Математическое описание глобального изменения климата
То, что можно полностью контролировать, никогда не бывает полностью реальным; то, что реально, никогда не бывает полностью контролируемым.
Владимир Набоков
Если бы человечество могло составить список самых насущных проблем третьего тысячелетия, одной из них наверняка стало бы глобальное изменение климата. Это многогранная задача, которая имеет не только научный, но, как вы увидите далее, экономический и политический аспект. Мы рассмотрим эту проблему с точки зрения математики, поскольку математика хаоса играет в ней очень важную роль.
Математическая экология — раздел математики, пребывающий в более чем почтенном возрасте: он «повзрослел» еще два столетия назад, в XIX веке. В то время многие ученые стали применять математические методы для изучения взаимоотношений между живыми организмами и окружающей средой. Мы уже знакомы с некоторыми из этих ученых, в частности с Пьером Франсуа Ферхюльстом, который описал логистическое отображение для моделирования динамики численности определенных популяций. К числу этих ученых принадлежал и итальянский математик и физик Вито Вольтерра (1860–1940), известный тем, что сформулировал систему нелинейных дифференциальных уравнений, описывавших динамику биологической системы, в которой между собой взаимодействовали всего два вида живых существ — хищники и жертвы. Однако математика оказалась полезной не только при изучении динамики численности популяций, но и, уже в XX веке, при моделировании погоды и климата — двух систем, элементами которых являемся мы, люди. Глобальное изменение климата представляет собой междисциплинарную задачу: ее решением занимаются климатологи, метеорологи, физики, геологи, биологи, экономисты. Климатическая система относится к сложным системам и состоит из пяти подсистем: атмосферы (воздуха), гидросферы (воды), литосферы (земли), криосферы (льда) и биосферы (живых организмов). Бесконечную сложность окружающей среды нельзя понять, не изучив множество связей между экосистемами Земли.
Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.