Том 31. Тайная жизнь чисел. Любопытные разделы математики - [39]

Шрифт
Интервал

В героическую для математики эпоху почти не существовало научных журналов и периодической печати, об открытиях становилось известно из переписки, а информация распространялась так же медленно, как масляное пятно расплывается на бумаге. Проходило очень много времени, прежде чем становилось известно, что некто из далекой страны уже нашел верное решение той или иной задачи. Среди самых известных примеров одновременных открытий упомянем следующие.

— Десятичные дроби практически одновременно начали применять немецкий математик Бартоломеус Питискус (1561–1613) в 1608–1612 годах, Иоганн Кеплер в 1616-м и Джон Непер в 1616–1617 годах.

— Авторство логарифмов, которые в свое время считались едва ли не чудом, приписывается Неперу (1614), однако в действительности их также ввел швейцарский математик Йост Бюрги (1552–1632) в 1620 году.

— Закон обратных квадратов, который играет основную роль в физике, астрономии, электромагнетизме и других областях, был независимо друг от друга открыт двумя учеными, которые, к счастью, прекрасно ладили: Ньютон вывел этот закон в 1666 году, Эдмунд Галлей — в 1684-м. Подобная разница во времени объясняется одной из многочисленных странностей Ньютона, который не спешил публиковать результаты своих работ. Он написал «Математические начала натуральной философии» только под влиянием Галлея. В список авторов этого закона наряду с Галлеем можно включить и других ученых, в частностиРоберта Гука (1635–1703).

— Возможно, самым известным совпадением подобного рода стало одновременное создание математического анализа, вызвавшее яростную полемику, которая объяснимо, но абсолютно неоправданно приняла национальный оттенок. Позднее история расставила все по своим местам, и заслуженной чести были удостоены и англичанин Ньютон, и немецкий ученый Лейбниц, которые создали математический анализ одновременно и независимо друг от друга.

— Метод наименьших квадратов был открыт почти одновременно Адриеном Мари Лежандром (1806) и Карлом Фридрихом Гауссом (1809).

— Неевклидова геометрия составляет важную часть нашего культурного багажа. Она была создана усилиями Гаусса (1829), который держал полученные результаты в тайне, а также венгерского математика Яноша Бойяи (1802–1860) в 1826–1833 годах и русского математика Николая Лобачевского (1792–1856), который создал гиперболическую геометрию в 1836–1840 годах.

— Принцип двойственности в проективной геометрии был сформулирован Жаном-Виктором Понселе (1788–1867) иЖозефом Жергонном (1771–1859) в 1838 году.

— Векторы, автором которых, по всеобщему мнению, считается Герман Гюнтер Грассман (1809–1877), также были описаны Уильямом Роуэном Гамильтоном (1805–1865) в том же 1843 году.

— В 1846 году была открыта новая планета Солнечной системы — Нептун. Открытие почти одновременно совершили английский ученый Адамс и француз Леверье. Английский королевский астроном Джордж Биддель Эйри (1801–1892), раздув невообразимый скандал, отказался признать заслуги Адамса, однако позднее справедливость восторжествовала. Этот инцидент вновь пробудил дух соперничества между Британией и континентальной Европой, и так называемые мудрецы проявили себя в этом споре не с самой лучшей стороны. Нептун был открыт в 1846 году, однако первым, кто обнаружил его «на бумаге», произведя необходимые вычисления, был Адамс. Тем не менее достижение Адамса никоим образом не умаляет заслуг Леверье.

— Теорему о простых числах сформулировал Гаусс, однако доказать ее он не смог. Это и неудивительно — найти доказательство этой теоремы совсем не просто. Лишь в 1896 году это удалось независимо друг от друга сделать французу Жаку Адамару (1865–1963) и бельгийцу Шарлю Жану Ла Валле Пуссену (1866–1962).

— Итальянский математик Эннио де Джиорджи (1928–1996) и нобелевский лауреат американец Джон Нэш (род. 1928) в 1956 году практически одновременно решили 19-ю проблему Гильберта. Однако де Джиорджи опередил Нэша всего на несколько месяцев, и в результате умственное расстройство последнего серьезно обострилось.


Очевидно или нет?

Никто пока не смог объяснить, что значит «очевидно» или «тривиально», по меньшей мере, для конкретного профессионального математика. В общем случае фраза «это очевидно» означает «это кажется мне очевидным», а это не совсем одно и то же. Принстонские студенты в свое время шутили, что очевидное по мнению Алонзо Черча (1903–1995) было настолько очевидным, что это понимали все; очевидное по мнению Соломона Лефшеца (1884–1972) непременно было ложным, а если что-то очевидным считал Герман Вейль (1885–1955), то доказать это мог разве что фон Нейман. Эта история в некотором роде характеризует фон Неймана, о котором Питер Лакc (род. 1926), лауреат Абелевской премии, говорил так: «Большинство математиков доказывают то, что могут. Фон Нейман доказывает то, что хочет».

Рассказывают, что как-то раз на лекции фон Неймана один из слушателей поднял руку и спросил: «Господин фон Нейман, вы могли бы доказать это утверждение по-другому?» Фон Нейман опустил руки, посмотрел на доску, подумал несколько секунд и ответил: «Да», после чего продолжил выступление.


Еще от автора Хоакин Наварро
Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.