Том 31. Тайная жизнь чисел. Любопытные разделы математики - [40]
Похожая история произошла и с Годфри Харолдом Харди (1877–1947), который, по-видимому, произнес злополучные слова «Это очевидно», а затем сразу же понял, что это не совсем так. Он посмотрел на доску, затем повернулся и, не говоря ни слова, вышел из аудитории под удивленный шепот студентов. Спустя пять минут Харди вернулся и произнес: «Действительно, это тривиально», после чего повернулся к доске и продолжил лекцию. Другие утверждают, что эта история произошла с Гильбертом.
Иногда фраза «Это очевидно» звучит совершенно оправданно: к примеру, Александр Гротендик (род. 1928), человек поистине выдающегося ума, в 1969 году опубликовал статью, озаглавленную «Hodge’s General Conjecture is False for Trivial Reasons» («Общая гипотеза Ходжа ложна из тривиальных соображений»). И действительно, гипотеза Ходжа была сформулирована некорректно, и ее следовало изложить иначе. Учитывая, что эту гипотезу никто не смог доказать до сих пор, немногие ожидают, что она будет доказана в ближайшие сто лет. Доказательство гипотезы Ходжа в текущей формулировке входит в число семи задач тысячелетия, предложенных Институтом Клэя, за решение которых полагается премия в 1 миллион долларов.
Параллельно с Нобелевской премией ежегодно вручается Шнобелевская премия — как понятно из названия, это шутливая имитация Нобелевской премии. Шнобелевская премия присуждается не какой-то авторитетной организацией или академией наук, а юмористическим журналом «Анналы невероятных исследований». Редакция этого журнала выискивает среди научных статей, публикуемых во всем мире, кажущиеся комичными, абсурдными или имеющие необычные названия. Мы говорим «кажущиеся», поскольку речь идет об очень серьезных статьях, содержащих научную информацию, хотя на первый взгляд она кажется нелепой. Шнобелевские премии вручаются ежегодно на церемонии, где обычно присутствуют многие нобелевские лауреаты. Лауреатов Шнобелевской премии также приглашают на церемонию вручения, и, как правило, они не отказываются.
Любопытно, что по меньшей мере один нобелевский лауреат также был удостоен Шнобелевской премии — это советский и нидерландский ученый Андрей Гейм (род. 1958), удостоенный Нобелевской премии за открытие графена, а Шнобелевской — за исследование диамагнитной левитации лягушки.
Один пример стоит тысячи слов, поэтому упомянем работы некоторых лауреатов премии, имеющие отношение к математике.
— В 1993 году премии была удостоена статья Роберта Фейда (США) по математической статистике, озаглавленная «Gorbachev! Has the Real Antichrist Come? («Горбачев! Явление настоящего антихриста?»). Согласно этой статье, вероятность того, что Горбачев на самом деле является антихристом, равна:
— В 1994 году премии была удостоена Южная баптистская церковь Алабамы за оценку числа жителей каждого штата, которые попадут в ад, если немедленно не покаются.
— В 2000 году в номинации «Информационные технологии» премию получил Крис Нисвандер из США за создание программы PawSense («Котодетектор»), способной определить, когда по клавиатуре компьютера ходит кошка.
— В 2002 году настал черед индийцев Срикумара и Нирмалана за блестящее исследование Estimation of Total Surface Area in Indian Elephants — Elephas maximus indicus («Оценка общей площади поверхности индийских слонов Elephas maximus indicus») — несомненно, необходимое для необъяснимых целей.
— В 2006 году премия была присуждена австралийцам миссис Ник Свенсон и Пирсу Бёрнсу, вычислившим минимальное число снимков, которые нужно сделать, чтобы на групповой фотографии не было моргнувших людей. Статья называлась «Blink-Free Photos, Guaranteed» («Фотографии без моргания. С гарантией»).
— В 2007 году Шнобелевской премии по физике были удостоены Махадеван (США) и Энрике Серда Вильябланка (Чили) за статью Geometry and Physics of Wrinkling («Геометрия и физика морщин»), где рассматривалось образование морщин и складок на простынях, которые становятся настоящим бедствием для родителей неспокойных детей.
— В 2009 году премией был отмечен Гидеон Гоно, директор Резервного банка Зимбабве — не самого престижного учреждения в наше время, которое для удобства населения и повышения образовательного уровня опубликовало справочные статьи, где приводились номиналы банкнот, выпущенных банком, составлявшие от 0,1 до 1000000000000000 долларов. По-видимому, во владениях Роберта Мугабе наблюдается немалая инфляция, а ведь далеко не все могут разборчиво произнести: «Будьте добры, дайте бананов на 1000 000000 000 000 долларов». Представьте масштаб трагедии, которая разыгралась бы, если продавец понял эту фразу как «Будьте добры, дайте бананов на 100000000000000 долларов». Простая арифметико-лингвистическая ошибка может привести к смерти от голода — абсурд, сам по себе достойный премии.
Пусть не все, но некоторые совершенно определенно заслужили это. Мы не имеем в виду случаи, когда тюремное заключение было вызвано обстоятельствами, не связанными с математикой. К примеру, Бертран Рассел во время Первой мировой войны попал в тюрьму за пацифистские взгляды, Казанова в свое время оказался в застенках по политическим причинам, а американский математик Теодор Качинский (род. 1942), больше известный как Унабомбер, был приговорен к пожизненному заключению за терроризм. Но существуют и не столь известные случаи.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.