Том 31. Тайная жизнь чисел. Любопытные разделы математики - [35]
Роман «Код да Винчи» не только стал бестселлером на всех языках, но и вызвал интерес у любителей математики, так как многие ключи к загадке романа имеют отношение к арифметике или геометрии. Автор обрушивается с жестокой критикой на такие организации, как Опус Деи, и это вызвало недовольство в некоторых кругах. Неприязнь недоброжелателей стала бы еще больше, если бы им сообщили, что в математических выкладках, приведенных в «Коде да Винчи», имеются неточности. Расскажем об одной из них.
В главе 22 монах Сайлас, носивший железные вериги для усмирения плоти, смотрит на линию Розы в церкви Сен-Сюльпис. Это металлическая лента, проложенная на полу строителями церкви в 1727 году подобно гномону — астрономическому инструменту, тень которого указывает точное время в день летнего солнцестояния. К сожалению, автор романа, Дэн Браун, пишет, что эта линия совпадает с линией, обозначающей Парижский меридиан. На самом деле это не так: подлинный меридиан проходит по воображаемой линии, отстоящей от линии Розы на несколько метров. Вы можете увидеть эту непрерывную линию в Парижской обсерватории и на улицах города — ее образуют свыше ста бронзовых медальонов с именем Араго, первого математика, который вычислил положение меридиана. Первый медальон находится в центре знаменитой пирамиды Лувра.
Линия Розы на полу церкви Сен-Сюльпис доходит до обелиска, расположенного в глубине зала.
Металлическая лента, указывающая положение Парижского меридиана в обсерватории.
Англичанин Стивен Хокинг (род. 1942) из героя научного мира превратился в любимца СМИ и желтой прессы. Выдающийся ученый, обладающий невероятными способностями, прикованный к инвалидной коляске и страдающий от неизлечимого заболевания, стал желанной добычей журналистов. Если учесть, что основной областью деятельности Хокинга является астрофизика, то он сегодня является первым кандидатом на место гениального ученого и умнейшего человека на Земле.
В юности Хокинг учился в Оксфорде, где настоящим бедствием были не только лекции, но и сложнейшие задачи, которые требовалось решить самостоятельно. Как-то раз Хокинг с друзьями столкнулись с рядом особо трудных задач. Некоторые просидели над ними всю ночь и к утру решили целых две с половиной задачи.
Наш герой принялся за дело после завтрака. У него оставалось всего три часа — ровно через три часа должны были начаться занятия, где нужно было сдать проклятые задачи. Хокинг появился у дверей аудитории перед началом с поникшей головой. «Ну что? Решил какую-нибудь?» — спросили его друзья. Он ответил: «Черт побери, мне не хватило времени. Я решил только первые десять».
Жан Лере (1906–1998) был одним из крупнейших французских математиков XX века. При всей близости к группе Бурбаки он не примкнул к этому коллективу, позднее ставшему легендарным. Лере был патриотом и выдающимся интеллектуалом, поэтому нацисты, оккупировавшие Францию, сочли его угрозой для режима и с 1940 по 1945 год содержали его в лагере для военнопленных близ Эдельбаха.
Лере был специалистом по гидромеханике и получил несколько очень важных результатов, связанных с одной из задач тысячелетия — задачей о решении уравнений Навье — Стокса, ключевых уравнений гидродинамики. Боясь, что нацисты узнают, кто он, и захотят использовать его знания в военных целях, Лере радикально сменил род деятельности и занялся топологией. Этот раздел математики в то время считался бесполезным и не представлял для военных никакого интереса. Однако благодаря своему выдающемуся уму Лере вскоре стал одним из ведущих специалистов по алгебраической топологии во всем мире, хотя по-прежнему находился в лагере для военнопленных.
Однако все, даже самое плохое, когда-нибудь заканчивается. Лере пережил войну и был освобожден. Вернувшись к работе, он оставил топологию, которой уделил столько лет, и вновь, как и до войны, занялся уравнениями в частных производных. И вновь он стал мировым лидером в своей области. Есть в этом мире вещи, которые остаются неизменными.
Следует признать, что некоторые шутки порой очень обидны. Прекрасный пример такой шутки можно найти на странице 75 книги «Математические методы для физических наук» (издание 1965 года). Ее автор, Лоран Шварц (1915–2002), — известный математик, член группы Бурбаки и лауреат Филдсовской премии 1950 года.
На этой странице, которой заканчивается очередная глава книги, приведен ряд задач. Соль шутки заключена в задаче 8, которая в переводе с французского звучит так: «Одно из утверждений 1–7 неверно! Какое?». У бедного студента, который, потратив уйму времени, докажет задачи 1–7, при виде задачи 8 с языка, скорее всего, сорвется крепкое слово, и шутка автора покажется ему вовсе не смешной. Представьте, каково это: пролить семь потов, решить семь задач и в итоге услышать, что в одной из них ошибка — причем неизвестно, в какой именно!
Но если поразмыслить хорошенько, разве почитаемая всеми математика — это не искусство мысли? Возможно, своей шуткой Шварц попал в самую точку, и задача под номером 8 поистине прекрасна.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.
Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.