Том 31. Тайная жизнь чисел. Любопытные разделы математики - [34]

Шрифт
Интервал

Лектор лихо лавирует в океане математических понятий и теорем, в котором аудитория давно и бесславно потонула. Порой слушатели совершенно не понимают, о чем идет речь. И тут один из студентов решился попросить о перерыве в этой словесной бомбардировке: «Извините, не могли бы вы повторить еще раз, помедленнее?» Винер выполнил просьбу, однако сделал это своеобразным способом. Студент жалуется на то, что лекция идет слишком быстро? Что ж, стоит немного расслабиться.

Винер с улыбкой расположился у доски и несколько минут хранил молчание. Когда, по его мнению, прошло достаточно времени, чтобы студенты смогли переварить услышанное, он все с той же улыбкой вернулся к доске, поставил энергичную точку, и лекция на этом закончилась. Разумеется, никто так ничего и не понял.


Нелогичная конституция

Наибольшее влияние на развитие современной математики оказал австрийско-американский ученый Курт Гёдель (1906–1978) — великий математик, который будет упомянут во всех энциклопедиях будущего за свои научные достижения, а также, увы, во всех сборниках анекдотов за необычные черты характера, которые с годами только обострились.

В конце жизни Гёдель посчитал, что ему неплохо бы получить американское гражданство. Для этого, согласно правилам, требовалось поклясться в верности Конституции США перед судьей и в присутствии двух свидетелей. Свидетелями стали друзья — и какие! Оба они, как и Гёдель, прошли через Институт перспективных исследований в Принстоне. Одним был Альберт Эйнштейн, другим — экономист Оскар Моргенштерн (1902–1977), создавший вместе с Джоном фон Нейманом теорию игр. Оба опасались, что Гёдель совершит что-нибудь неразумное во время церемонии — им было известно о прогрессирующей паранойе ученого, и они уже знали, что Гёдель прочел Конституцию США и своим острым умом обнаружил статьи, которые содержали лазейки, позволявшие установить диктатуру.

Настал момент, когда Гедель должен был предстать перед судьей, который счел себя обязанным побеседовать со столь выдающимися людьми, ведь перед ним предстали три величайших интеллектуала мира. Со всей вежливостью судья напомнил Геделю, что произошедшее на его родине (судья ошибочно упомянул Германию, хотя Гедель был гражданином Австрии) больше не повторится: «Американская конституция никогда не позволит установить диктатуру в нашей стране». Это было равносильно упоминанию веревки в доме повешенного. Гёдель с жаром начал свое выступление: по его словам, из-за лазеек в Конституции диктатура в США была вполне возможной. Но свидетели поспешно перебили Гёделя и перевели разговор на другую тему. Беседа закончилась ничем — все присутствующие, включая судью, решили больше не беспокоить прославленного логика. Гёдель в конце концов получил желаемое гражданство — судья вынес положительный вердикт, возможно, только для того, чтобы больше не слушать Гёделя.

«Все хорошо, что хорошо кончается» — должно быть, подумал Эйнштейн. «И кто только просил меня ввязаться в это дело?» — должно быть, подумал Моргенштерн. «Но мне не дали объясниться!» — наверняка сказал Гёдель. «Вот потеха!» — подумал бы американский комик Граучо Маркс, если бы мог присутствовать при разговоре.



Курт Гёдель в Институте перспективных исследований в Принстоне.


Особый словарь

Пал Эрдёш выделялся не только своими нестандартными подходами в математике и крайней научной плодовитостью — он также использовал особый язык. Необычная манера выражаться стала следствием излишней увлеченности Эрдёша математикой, и она достойна нескольких страниц в нашей книге. Ограничимся лишь избранными примерами, которые нетрудно найти даже в интернете.




Идеальная афера

Математики способны придумывать превосходные аферы — даже жаль, что они профессионально этим не занимаются. Математик Джон Аллен Паулос (род. 1945) преуспел на литературном поприще, написав несколько книг по математике, ставших мировыми бестселлерами. Возможно, самой успешной из них была книга «Математическая безграмотность и ее последствия». В ней Паулос демонстрирует неспособность современного человека оперировать числами в повседневной жизни. К примеру, использование процентов вызывает затруднения у миллионов людей, даже вполне грамотных.

Однако мы упомянули Паулоса по другой причине. В книге «Математическая безграмотность» он объясняет инвестиционную аферу, которую может провести любой, обладающий достаточным начальным капиталом. Изложим ее на свой страх и риск.

Допустим, что мы разослали 64 тысячи сообщений по разным адресам. В половине из них мы рекомендуем адресату совершить вложения, в другой половине советуем не инвестировать. В итоге 32 тысячи сообщений окажутся истинными — неплохой результат. Повторим эту же операцию, к примеру, еще 5 раз, но не будем отправлять сообщение тем, кто в прошлый раз получил ошибочный совет. В итоге у нас останется 1000 адресов людей, получивших подряд шесть сообщений с верной информацией об инвестициях. В нашем мире жесткой конкуренции, полном неопределенности, получить шесть верных сообщений подряд попросту немыслимо.

Таким образом, у нас есть 1000 потенциальных жертв аферы. Мы можем убедить кого-нибудь из этой тысячи передать нам определенную сумму для того, чтобы мы выгодно ее вложили. Разумеется, деньги жертве мы не вернем. Внесем ясность: эту схему описал Паулос, мы же не несем за нее никакой ответственности.


Еще от автора Хоакин Наварро
Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению.


Том 37. Женщины-математики. От Гипатии до Эмми Нётер

Из этой книги читатель узнает о жизни и научных достижениях самых выдающихся женщин-математиков разных эпох. Это Гипатия и Лукреция Пископия, Каролина Гершель и Мэри Сомервилль, Ада Лавлейс и Флоренс Найтингейл, Софья Ковалевская и Эмми Нётер, Грейс Хоппер и Джулия Робинсон. Хотя они жили в разные времена и исследовали разные области математики, всех их объединяла любовь к этой науке, а также стремление сломать сложившиеся в обществе стереотипы. Своим примером они доказали всему миру: женщины обладают такими же интеллектуальными способностями, как и мужчины, и преуспели в математике чуть меньше исключительно по социальным причинам.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.