Том 28. Математика жизни. Численные модели в биологии и экологии - [38]

Шрифт
Интервал

), А>y — альбедо, вызванное черными маргаритками (доля земной поверхности, где они произрастают, равна S>y). Обратите внимание, что выражение, по которому рассчитывается альбедо, описывает модель энергетического баланса планеты. Напомним, что черные маргаритки отражают меньше света, чем открытая суша, а белые маргаритки — больше, чем суша. Иными словами, выполняется следующее неравенство: А>y < А>sА.

Цель простейшего эксперимента с моделью «Маргариткового мира» — изучить, как изменяется доля поверхности планеты, где произрастают белые и черные маргаритки. Как правило, в модели используются следующие значения: А>y = 0,25, А>s = 0,50, А = 0,75, γ = 0,30. Планета, где в изобилии растут белые маргаритки, будет холоднее, чем планета, изобилующая черными цветами. После увеличения числа белых маргариток, вызванного нагреванием планеты, температура будет снижаться, и напротив, любое снижение температуры на планете будет компенсироваться ростом числа черных маргариток. Кроме того, для некоторых значений параметров возможны два равновесных состояния: планета будет либо совершенно безжизненной, либо полностью покрытой маргаритками.

На страницах этой книги мы совершили увлекательную экскурсию, во время которой показали, что причиной удивительного прогресса биологии и биомедицины во многом стало плодотворное сотрудничество математики и науки о жизни. Использование дифференциальных уравнений, теории хаоса, программ символьных вычислений, операций над векторами и матрицами (и линейной алгебры) позволяет биоматематикам описать красоту и сложность жизни с помощью математических выражений. Благодаря математике ученые могут создавать модели, делать прогнозы относительно самых разных проявлений жизни, будь то гены, белки, клетки, организмы, популяции или экосистемы. Мы надеемся, что после прочтения этой книги читатель захочет подробнее узнать о математической биологии, или биоматематике — науке с богатыми традициями и большими перспективами.

Приложение

Магия комплексных чисел

По какой-то странной причине комплексные числа тесно связаны со многими физическими явлениями. Они присутствуют в электромагнетизме, используются в электронике, электротехнике, квантовой механике и при изучении волн. В математической биологии комплексные числа применяются при изучении биологических ритмов, занимают важное место в теории хаоса, без них невозможно представить фракталы на компьютере.

Графическое представление комплексных чисел очень просто. Если предположить, что комплексное число — это точка z, то в декартовой системе координат, которую далее мы будем называть комплексной плоскостью, на горизонтальной оси X будет откладываться его вещественная часть а, на вертикальной оси Y — мнимая часть Ь.

Если мы также обозначим через r расстояние от начала координат до точки z, нетрудно показать, что это расстояние (оно называется модулем комплексного числа и обозначается |z|) равно √(a>2 +Ь>2). Более того, если учесть, что вещественная часть а равна косинусу угла α между осью х и радиус-вектором точки z, умноженному на модуль комплексного числа, а мнимая часть Ь — синусу угла α, умноженному на модуль комплексного числа, то в так называемых полярных координатах число z будет записываться следующим образом:

z = r·(cos(α) + i·sin(α)).

Одно из самых любопытных свойств комплексных чисел заключается в том, что они расширяют возможности моделирования реальности, так как на них не распространяются ограничения, свойственные вещественным числам. Чтобы совершать с ними действия, можно представить, что, находясь на комплексной плоскости, ученый одной ногой стоит в вещественном мире (ему соответствует часть а), другой — в мнимом мире (ему соответствует часть b). При необходимости он беспрепятственно путешествует из одного мира в другой. Таким образом, к примеру, операции сложения и умножения комплексных чисел расширяют значение этих двух операций, что вы могли видеть при изучении фракталов Мандельброта и множеств Жюлиа.


Сложение и вычитание комплексных чисел

С комплексными числами могут выполняться операции сложения и вычитания. На первый взгляд это кажется сложным, но в действительности это не так. Сумма двух комплексных чисел а bi и с + di рассчитывается следующим образом:

(а i) + (с + di) = (а + с) + (b + d)i.

К примеру, (2 + 5i) + (3 — i) = (2 + 3) + (5–1)i = 5 + 4i.

Вычитание — операция, обратная сложению, следовательно, разность комплексных чисел abi и с + di рассчитывается так:

(а i) + (с + di) = (а — с) + (b — d)i.

К примеру, (1 + 3i) — (4 + 2i) = (1–4) + (3–2)i = —3 + i.


Умножение и деление комплексных чисел

Также для комплексных чисел определены умножение и деление.

Произведение двух комплексных чисел а bi и с + di определяется так:

(аbi)·(с + di) = (ас — bd) + (ad + bc)i.

Обратите внимание, что результат умножения можно получить следующим, более понятным способом:

(а + bi)·(с + di) = а·с + а·d·i + b·с·i + b·d·i>2.

Напомним, что i>2 = —1. Имеем:

a·c + a·d·i + b·i·c — b·d.

Приведем подобные слагаемые:

(ас — bd) + (ad + bc)i.

К примеру, (2 + 6i)·(8 + 2i) = (2·8–6·2) + (2·2 + 6·8)


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


25 техник эффективного обучения для интересного изучения математики с ребенком

Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Как три вектора один детерминант в нуль обратили

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.