Том 28. Математика жизни. Численные модели в биологии и экологии - [37]

Шрифт
Интервал


А что, если мы сами меняем атмосферу? 
Гея и «Маргаритковый мир»

«Маргаритковый мир» (англ. Daisyworld) — это математическая модель, предложенная Эндрю Уотсоном и Джеймсом Лавлоком в 1983 году. Подобно тому, как уравнения Лоренца представляют собой упрощенную модель климата, модель Уотсона и Лавлока представляет упрощенный мир, населяемый исключительно маргаритками белого и черного цвета. Целью этой модели было объяснить, как живые организмы способны менять атмосферу, в частности температуру воздуха на планете.



Джеймс Лавлок, автор гипотезы Геи. 1993 год.


В модели предполагается существование Солнца с характеристиками, схожими с нашим Солнцем, и, как следствие, присутствие солнечного света. В модели также учитывается альбедо, то есть доля солнечного света, отражаемого маргаритками (черными или белыми), а также земной поверхностью, на которой не растут маргаритки. Если выбрать в качестве базового значения альбедо земной поверхности, не заселенной маргаритками, то альбедо белых маргариток будет выше базового значения, а их температура — ниже, чем температура земной поверхности. Черные маргаритки, напротив, будут отражать меньше света, чем незаселенная поверхность, в результате их температура будет выше. В модели Уотсона и Лавлока энергетический баланс планеты рассчитывается с учетом того, что на части суши произрастают белые маргаритки, на части — черные, а часть суши остается незаселенной. Кроме того, в модели рассматривается показатель снижения численности маргариток, а также математическая функция температуры. Модель содержит два дифференциальных уравнения, позволяющих смоделировать рост числа черных и белых маргариток на воображаемой планете:


Эти уравнения описывают скорость, с которой численность маргариток возрастает или убывает. Согласно первому уравнению, скорость, с которой меняется число белых маргариток х, зависит от их численности в момент времени t, коэффициента роста β(Т>x), а также от доли земной поверхности, где не растут маргаритки (S), и показателя снижения численности γ. Обратите внимание, что рост числа белых маргариток β(Т>x), в свою очередь, зависит от температуры Т участка земной поверхности, заселенной маргаритками.

Второе уравнение описывает динамику численности черных маргариток. В этом случае у — число черных маргариток в момент времени t, β(Т>y) — коэффициент роста, который зависит от локальной температуры Т на участке суши, где произрастают черные маргаритки, S — часть суши, где не растут маргаритки, у — показатель снижения численности. Будем считать, что значение у для обоих видов маргариток одинаково.

Также будем считать, что поведение коэффициента роста для белых и черных маргариток одинаково и описывается параболой. В соответствии с динамикой этого коэффициента предполагается, что температура, оптимальная для роста обоих видов маргариток, равна 22,5 °C. Таким образом, при оптимальной температуре коэффициенты роста белых и черных маргариток, β(Т>x) и β(Т>y), максимальны и равны единице. Так как коэффициенты роста описываются параболой, их значение будет уменьшаться до нуля по мере того, как температура будет приближаться к 5 °C или 40 °C (пороговые значения в модели выбраны произвольно). Следовательно, коэффициенты роста для двух видов маргариток варьируются от 0 до 1 и описаны похожими выражениями, которые приведены ниже:

β(Т>x) = 1–0,003265(22,5 — T>x)>2,

β(Т>y) = 1–0,003265(22,5 — T>y)>2.

Важно заметить, что в этих выражениях учитывается локальная температура. При температуре от 5 °C до 40 °C число маргариток будет возрастать. Так как белые маргаритки отражают больше солнечного света, область, в которой они произрастают, начнет охлаждаться. Черные маргаритки, напротив, поглощают солнечный свет, и область, в которой они произрастают, будет нагреваться. В результате температуру в областях, где произрастают белые маргаритки Т и черные маргаритки Т, можно выразить так:

T>x = Q(A — A>x) + T>m,

T>y = Q(A — A>y) + T>m

где Q — коэффициент поглощения тепла (его значение в модели равно 20), Т>m — средняя температура на планете, А — альбедо планеты, А>х  — альбедо, вызванное белыми маргаритками, А — альбедо, вызванное черными маргаритками.

Средняя температура на планете Т>m рассчитывается согласно закону Стефана — Больцмана. Этот закон гласит, что энергия, излучаемая телом, пропорциональна температуре этого объекта, возведенной в четвертую степень. Применив этот закон, получим следующее выражение:


где σ = 5669·10-8 Вт/м>2·К>4 — постоянная Стефана — Больцмана, Е — солнечная энергия, получаемая планетой. Обратите внимание, что если бы мы захотели смоделировать безжизненную планету, то есть планету, не населенную маргаритками, то значение альбедо было бы равным А = 0,5. Альбедо планеты А зависит от того, в какой степени поверхность планеты покрыта белыми и черными маргаритками. Это означает, что альбедо планеты А определяется следующим выражением:

АА>s·SA>x·S>x + А>y·S>y,

где A>s — альбедо той части суши, где не растут маргаритки (площадь этой части суши равна S), А — альбедо, вызванное белыми маргаритками (площадь суши, где растут белые маргаритки, равна 


Еще от автора Рафаэль Лаос-Бельтра
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.