Том 28. Математика жизни. Численные модели в биологии и экологии - [19]
Наконец, представим на графике число бактерий у(t) для каждого момента времени t. Заметим, что для данного начального значения численности бактерий у(0) и определенного значения параметра r с помощью компьютера можно получить значения численности бактерий в разные моменты времени, то есть у(0), у(1), у(2)…, у(100). Эта последовательность чисел называется орбитой. Зададимся вопросом: куда будет направлена эта орбита? Иными словами, каким будет окончательное значение численности популяции?
Чтобы ответить на этот вопрос, проведем все эксперименты согласно вышеописанному принципу, выполнив необходимые расчеты для соответствующих значений r.
В эксперименте № 1 бактерии вымрут: по прошествии определенного времени в сосуде не останется ни одной бактерии. Однако с математической точки зрения популяция достигнет равновесия — это происходит, когда численность популяции не меняется, то есть уровень ее изменения у', или, что аналогично, dy/dt, будет равен 0.
В нашем эксперименте численность популяции достигла так называемого точечного аттрактора у = 0, то есть популяция бактерий вымерла. Это одно из возможных состояний, к которому может прийти любая популяция. Аттрактор — не более чем точка или множество точек, к которым стремится или приближается динамическая система, в нашем эксперименте это орбита, образованная значениями численности бактерий. Равновесие означает, что система достигла аттрактора и находится в стабильном состоянии, так как dy/dt = 0. Значение у при этом совершенно неважно.
Точечный аттрактор.
Участь популяции бактерий в эксперименте № 2 будет не столь печальной. Эта популяция также достигнет точки равновесия, однако численность бактерий зафиксируется в точечном аттракторе у = 0,6. В эксперименте № 3 численность бактерий будет колебаться между определенным максимальным и минимальным значениями в зависимости от того, в какой момент времени t производится подсчет численности. В этом случае также говорят, что система достигла равновесия.
Эта разновидность аттрактора называется предельным циклом. Речь идет о замкнутой орбите, характерной для систем, в которых наблюдаются колебания. С геометрической точки зрения аттрактор действует подобно сточной трубе. Он может представлять собой точку, кривую или даже фрактал. Следовательно, стабильные системы, к примеру, рассматриваемая колония бактерий, — это системы, которые по прошествии определенного времени стремятся к некоторому аттрактору, в то время как нестабильные системы от аттракторов удаляются.
Предельный цикл.
Что же произойдет в последнем, четвертом эксперименте? Сразу же видно, что колебания численности популяции не подчинены никакой закономерности и являются абсолютно хаотическими. В подобных случаях определить точную численность бактерий невозможно: она заметно отличается в зависимости от того, в какой момент мы производим подсчет. Кроме того, в отличие от первых трех экспериментов, в этом случае изменение численности бактерий не подчиняется какой-либо схеме. Можно сделать вывод: хаос есть отсутствие закономерности колебаний. Подобное поведение наблюдается при достижении критического значения параметра дифференциального уравнения. В нашем эксперименте этим критическим значением является r = 3,6.
В этом случае орбита значений численности бактерий у(0), у(1), у(2)…, у(100) приближается к так называемому странному аттрактору. Он описывает поведение таких динамических систем, как климат на Земле, поведение биржевых индексов или электроэнцефалограмма человека.
Странный аттрактор.
В предыдущей главе вы познакомились с тем, как математическая биология изучает биологические системы и явления с помощью дифференциальных уравнений. Однако их использование — не единственный метод изучения динамических систем, а следовательно, не единственный метод моделирования биологических явлений. Ввиду все более широкого использования компьютеров еще одним популярным методом являются функции, или отображения. Их применение кажется более простым, чем использование дифференциальных уравнений. Классическим примером является ло
* * *
СВОЙСТВА ХАОСА
Одно из свойств хаотических систем заключается в том, что они ведут себя так, словно являются стабильными и нестабильными одновременно. Это означает, что существует аттрактор, к которому система приближается и от которого она в то же время отдаляется. Благодаря подобному поведению система обладает очень интересными свойствами. К примеру, хаотические системы очень чувствительны к изменению начальных условий. Небольшие отклонения, составляющие несколько десятых от величины ошибки измерения, приводят к тому, что будущее состояние системы значительно изменяется (в качестве примера можно привести климат Земли). Даже при известном текущем состоянии хаотической системы нельзя точно спрогнозировать ее поведение в последующие моменты времени. Рассмотрим в качестве примера колебания биржевых индексов: решение небольшой компании о покупке или продаже акций в зависимости от состояния индексов, дня и часа может оказать значительное воздействие на биржевые котировки спустя несколько часов. Таким образом, хотя хаотические системы описываются дифференциальными уравнениями, они характеризуются сложным поведением, которое объясняется существованием странного аттрактора. Так, например, странным аттрактором в простейшей модели земного климата является аттрактор Лоренца. Еще один странный аттрактор — аттрактор Хенона, связанный с тем, как происходит запоминание информации в нейронных сетях мозга человека и животных (за это отвечают связи между нейронами, или синапсы). Странными аттракторами являются множества Жюлиа, представляющие собой фракталы и объясняющие свойства некоторых биологических организмов, в частности бактерий и простейших.
Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.