Том 27. Поэзия чисел. Прекрасное и математика - [17]
Адольф Гурвиц (1859–1919), один из величайших математиков XX столетия, внесший особый вклад в изучение алгебраических кривых и теорию чисел.
Золотое сечение — это соотношение сторон прямоугольника совершенных пропорций. Согласно древнегреческим геометрам, прямоугольник обладает совершенными пропорциями, если при отсечении от него квадрата со стороной, равной меньшей стороне прямоугольника, оставшийся прямоугольник будет иметь прежнее соотношение сторон. Допустим, длина короткой стороны прямоугольника равна а, длинной стороны — b. Следовательно, длины сторон нового прямоугольника будут равны b — а и а. Соотношение сторон прямоугольника будет наиболее гармоничным при b/а = а/(Ь — а). Приняв х = b/а, имеем х = 1/(х — 1), то есть х>2 — х — 1 = 0. Положительный корень этого уравнения равен золотому числу Ф = (1 + √5)/2.
Если мы отсечем от прямоугольника золотого сечения бесконечное число квадратов и будем соединять противоположные вершины этих квадратов дугами длиной в четверть окружности, получим спираль золотого сечения, изображенную ниже.
Именно такую форму имеет раковина наутилуса, в виде этой спирали располагаются семена подсолнуха, облака в ураганах и антициклонах и звезды во многих галактиках.
Форму золотой спирали имеют раковины наутилуса, ураганы и галактики.
Золотое сечение присутствует в природе повсеместно. Оно привлекало математиков, художников, архитекторов и музыкантов. Обратимся к творчеству Дюрера. Из всех художников Возрождения он, возможно, лучше всех разбирался в математике. Все, что Дюрер знал о возведении городских стен и крепостей, об использовании циркуля и угольника для измерения размеров твердых тел, о пропорциях человеческого тела и о форме букв алфавита, он изложил во множестве книг, напечатанных после его смерти. Большую часть математических знаний Дюрер получил в Италии. По рекомендации венецианского художника Якопо де Барбари он в 1506 году отправился в Болонью, где постигал тайную науку у неизвестного наставника. Многие считают, что этим учителем был монах-францисканец Лука Пачоли, который в 1494 году составил большую математическую энциклопедию XV столетия. До какой степени Дюрер проник в тайны изученной им науки, в которой золотое сечение было заветной формулой идеальных пропорций человеческого тела, можно судить по его прекрасным картинам, где изображены обнаженные Адам и Ева. Оцените разницу между головастым Адамом и пышнотелой Евой на гравюрах Дюрера 1504 года (сегодня они хранятся в венской галерее Альбертина) и ими же, прекрасными и стройными, на картинах 1507 года (они выставлены в мадридском музее Прадо).
Чему Дюрер научился за три года с момента создания гравюры слева до написания картины справа? Чем вызвана эта разница в пропорциях тел Адама и Евы на его картинах?
Как показал Гурвиц, золотое сечение задается иррациональным числом, которое хуже всего описывается рациональными дробями: для любого числа с > √5 справедливо неравенство |Ф — p/q| > 1/(с·q>2), за исключением некоторых дробей p/q, при этом их число всегда будет конечным.
Донья Роса — Мартин Марко, Форд — Дирихле и Гурвиц
Вряд ли в романе «Улей» найдется два персонажа, которые бы внешне отличались больше, чем донья Роса и Мартин Марко. Она — полная, прожорливая, алчная и мизантропичная, он — худой, голодный, бездомный и приветливый. Эти два персонажа сталкиваются, когда донья Роса приказывает официанту вышвырнуть Мартина Марко из ее кафе за то, что тот не заплатил по счету. Хозяйка кафе указывает официанту, как нужно поступить: «На улицу выставить поаккуратней, а там — пару добрых пинков куда придется. Хорошенькое дело!» Тем не менее официант не стал наказывать Мартина Марко, поэтому ему ничего не оставалось, кроме как соврать донье Росе:
«— Всыпал ему?
— Да, сеньорита.
— Сколько?
— Два.
Хозяйка щурит глазки за стеклами пенсне, вынимает руки из карманов и гладит себя по лицу, где из-под слоя пудры пробиваются щетинки бороды.
— Куда дал?
— Куда пришлось, по ногам.
— Правильно. Чтоб запомнил. Теперь ему в другой раз не захочется воровать деньги у честных людей».
Столь же непохожими, как донья Роса и Мартин Марко, кажутся окружности Форда и рациональные приближения иррациональных чисел, описываемые теоремами Дирихле и Гурвица. Окружности Форда точны, элегантны и гармоничны, дроби Дирихле и Гурвица — шокирующие, полные секретов. Кажется, что эти понятия отражают два очень далеких друг от друга аспекта математики.
Однако в хороших романах часто случается так, что два далеких друг от друга персонажа воплощают дополняющие друг друга противоположности, составляющие одну из граней человеческой природы. Так же часто два математических результата, на первый взгляд далекие друг от друга, оказываются выражениями одного и того же математического явления.
Таковы касательные окружности Форда и рациональные приближения иррациональных чисел: первое есть не более чем геометрическое представление второго, как если бы хитросплетения теоремы Гурвица выкристаллизовались в четком и прозрачном изображении — в окружностях Форда.
Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.