Том 27. Поэзия чисел. Прекрасное и математика - [16]
С учетом этого немецкий математик Иоганн Петер Густав Лежён Дирихле (женатый на сестре композитора Феликса Мендельсона) в 1842 году показал, что иррациональное число всегда можно представить в виде дроби так, что ошибка будет меньше величины, обратной квадрату знаменателя дроби.
Немецкий математик Иоганн Петер Густав Лежён Дирихле (1805–1859), после смерти Гаусса сменивший его на посту главы кафедры в Гёттингене в 1855 году.
Доказательство этого утверждения элементарно и основано на «принципе ящиков», позднее названном в честь Дирихле. Принцип Дирихле представляет собой простое отражение здравого смысла: если мы хотим поместить определенное число голубей в ящики, при этом голубей больше, чем ящиков, то в конечном итоге в одном из ящиков окажется больше одного голубя. Принцип Дирихле полезен при доказательстве определенных математических результатов, среди которых — теорема Дирихле о рациональном приближении. Эта теорема звучит так: для данного иррационального числа а существует бесконечно много дробей вида p/q таких, что |a — p/q| < 1/q>2. Доказательство этой теоремы приведено на следующей странице. Этот результат существенно точнее, чем тот, о котором мы говорили выше, так как с увеличением q число 1/q>2 уменьшается намного быстрее, чем 1/(2·q). Результат Дирихле нельзя улучшить относительно второй степени 1/q. Это тесно связано с разделением иррациональных чисел на алгебраические и трансцендентные.
Рассмотрим √2: это иррациональное число, однако его можно достаточно просто описать последовательностью целых чисел (…, —6, —5, —4, —3, —2, —1, 0, 1, 2, 3, 4, 5, 6…)» так как является решением уравнения с целыми коэффициентами х>2 —2 = 0. Числа, которые представляют собой решения уравнения с целыми коэффициентами (вне зависимости от степени уравнения), называются алгебраическими.
* * *
ДИРИХЛЕ И «ПРИНЦИП ЯЩИКОВ»
Доказательство принципа Дирихле выглядит следующим образом. Рассмотрим произвольное иррациональное число а и выберем некоторое натуральное число N. Теперь рассмотрим числа а, 2·а, 3·а…, N·а и (N + 1)·а. Этот список содержит N + 1 число. Для каждого из них (обозначим их в общем виде k·а) найдется натуральное число р>k такое, что разность k·а — р>k будет лежать на интервале от 0 до 1. К примеру, если а = √5 = 2,236…, то 2·а = 4,472… и р>2 будет равно 4.3·а = 6,708…, р>3 будет равно 6 и так далее. Теперь расположим числа от 0 до 1 в N ящиков: в первом ящике окажутся числа от 0 до 1/N, во втором — от 1/N и 2/N и так далее. В последнем ящике окажутся числа от (N — 1)/N до 1. Так как наш список чисел k·а — р>k, k = 1, …, N + 1 содержит N + 1 число, лежащее на интервале от 0 до 1, и мы расположили числа от 0 до 1 в N разных ящиках, то, согласно принципу Дирихле, в одном из этих ящиков будет больше одного числа. Допустим, что числа k·а — р>k и n·а — р>n находятся в одном ящике. Очевидно, что разница между двумя числами в одном ящике меньше 1/N. Отсюда следует, что |k·а — р>k — (n·а — р>n)| < 1/N. Если теперь мы введем обозначения q = k — n и р = р>k — р>n, то получим: |q·а — р| < 1/N, или |а — p/q| < 1/(q·N). Так как и k, и n меньше N + 1, получим, что q меньше N. Учитывая, что это число можно считать положительным, имеем |а — p/q| < 1/q>2. Так как число а иррационально, а N — произвольное натуральное число, неравенство |а — p/q| < 1/(q·N) гарантирует, что мы можем найти бесконечно много различных дробей вида p/q, удовлетворяющих неравенству |а — p/q| < 1/q>2.
* * *
Каким бы монструозным нам ни казалось число
оно является алгебраическим, так как его можно представить как решение уравнения четвертой степени с целыми коэффициентами х>4 + 8х — 5 = 0. Все числа, которые не являются алгебраическими, в математике называются трансцендентными. В некотором смысле они максимально далеки от натуральных чисел, которые мы используем при счете.
Самые знаменитые математические константы — обычно трансцендентные числа. Так, трансцендентными являются число π и число е, однако это было доказано лишь в конце XIX века. Трансцендентность числа π имеет удивительное следствие: задача о квадратуре круга не имеет решения. Иными словами, с помощью циркуля и линейки нельзя построить квадрат, равный по площади данному кругу. Задача о квадратуре круга не давала покоя древнегреческим математикам, однако ее решение было найдено лишь в конце XIX столетия. Если мы сравним решение математической задачи с установлением мирового рекорда, то задача о квадратуре круга стала рекордом, который не удавалось превзойти две с половиной тысячи лет!
При поиске приближения алгебраических чисел в виде дробей нельзя найти более точное приближение, чем описанное теоремой Дирихле. Если мы рассмотрим произвольное алгебраическое число а и число k, строго большее 2 (k > 2), то, за некоторыми исключениями (число этих исключений всегда будет конечным), будет выполняться неравенство |а — р/q| > 1/q>k.
Это означает, что результат Дирихле нельзя улучшить относительно степени знаменателя. Однако с единицей, «сопровождающей» знаменатель, дело обстоит иначе. В 1891 году другой немецкий математик, Адольф Гурвиц, доказал, что эту константу можно заменить меньшей: 1/√5. Так, для произвольного иррационального числа
Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.