Том 27. Поэзия чисел. Прекрасное и математика - [12]

Шрифт
Интервал


Сплетение судеб

Как мы уже говорили в предисловии, цель этой книги — не развернуть сухое и скучное обсуждение эстетической ценности математики, а продемонстрировать на примерах некоторые основные принципы математической красоты. К этому мы сейчас и приступим.

Вы уже знаете, как сложно увидеть красоту, сокрытую в математических рассуждениях. Похожие сложности возникают в попытках оценить эстетику литературы. Однако литература описывает природу человека, что несколько упрощает ее восприятие: эмоции намного ближе, понятнее и поэтому интереснее нам, чем холодность прямоугольного треугольника или экзотичность простого числа. Однако математика также имеет эмоциональную составляющую, причем более интенсивную и важную, чем можно предположить. Об этом мы поговорим в следующей главе.

Мы, математики, должны уметь использовать эмоции в той же степени, что и писатели, и переводить на математический язык, пусть и с необходимыми оговорками, некоторые приемы из арсенала романистов. Расскажем об одном из таких приемов.

Одна из главных целей любого романа и, возможно, его основное достоинство заключается в том, чтобы показать богатство, разнообразие и сложность человеческой природы. В XX веке возник стилистический прием, позволяющий достичь этой цели, — это изображение человеческого муравейника, в который неизбежно превращается любой большой город, и плотной сети взаимоотношений между его жителями. Так родились романы с великим множеством персонажей, изображавшие сложность кишащего людьми мегаполиса; эти персонажи в романе, кажется, никак не пересекаются друг с другом, но постепенно скальпель автора рассекает реальность и обнаруживает плотную сеть удивительных взаимосвязей между героями. К жемчужинам этого стиля принадлежат «Манхэттен» (1925) американского писателя Джона Дос Пассоса и «Улей» (1951) испанского писателя Камило Хосе Села, лауреата Нобелевской премии по литературе, в котором описывается 296 воображаемых и 50 реальных персонажей, хотя большинство из них появляются на сцене лишь ненадолго.

В математике достаточно часто случается так, что различные законы и теоремы кажутся далекими друг от друга, однако в итоге между ними обнаруживается неразрывная связь. Математика представляет собой единое целое, и часто всего один взгляд под правильным углом или одна блестящая идея позволяют связать и объединить результаты, которые, на первый взгляд, никак не связаны между собой. Как и в романах «Манхэттен» и «Улей», демонстрация этого богатства скрытых взаимосвязей позволяет ярче выразить красоту математики. Хорхе Вагенсберг в своей книге «Интеллектуальное наслаждение» отмечает, что поиск общего принципа в различном — важнейший источник эстетического удовольствия: «Понять, что две вещи, по сути, различные, есть в конечном итоге одно и то же, — основа понимания и редкого интеллектуального наслаждения». Оставшуюся часть этой главы мы посвятим примеру, доказывающему истинность этого суждения.


Касательные окружности, рациональное приближение, диофантовы уравнения и роман «Улей»

Среди великого изобилия законов, теорем и гипотез, населяющих необозримый мир элементарной математики, выберем случайным образом трех главных героев нашей истории. Как и на страницах «Улья», эти персонажи кажутся настолько далекими друг от друга, насколько это позволяет невероятная широта и многообразие математики.

Однако в конечном счете отсутствие связей оказывается мнимым.

Первый персонаж нашей истории живет в старом квартале геометрии: это построение, в котором участвуют касательные окружности. Для удобства я дам имена всем трем нашим персонажам. Не думаю, что читатель очень удивится, когда узнает, что я дал им имена героев романа «Улей». Так, я назову нашего первого героя доньей Росой. В романе Селы донья Роса — хозяйка кафе «Утеха», где происходит действие многих эпизодов романа. «Мир для доньи Росы, — пишет Села, — это ее кафе и все прочее, что находится вокруг ее кафе. Говорят, что, когда приходит весна и девушки надевают платья без рукавов, у доньи Росы начинают поблескивать глазки. Я думаю, все это болтовня: донья Роса не выпустит из рук серебряной монеты ни ради каких радостей жизни. Что весной, что осенью. Самое большое удовольствие для нее — таскать взад-вперед свои килограммы вот так, прохаживаясь между столиками»[6].

Второе действующее лицо нашей истории живет в рабочем районе приближений: это метод, позволяющий верно определить приближенное значение произвольного числа, например √2 или π, с помощью дробей. Этого персонажа я назову Мартин Марко. В романе «Улей» Мартин Марко — поэт-идеалист левых взглядов, который остался вне игры, когда закончилась гражданская война: «Мартин Марко, бледный, изможденный, в обтрепанных брюках и потертой куртке, прощается с официантом, поднеся руку к полям своей убогой, грязной серой шляпы». Мартин Марко выживает только благодаря заботам друзей и старых знакомых, питается жареными яйцами, которые тайком от мужа готовит ему сестра Фило, и ночует в свободных кроватях отдыхающих проституток борделя, который держит старая подруга его матери.


Еще от автора Антонио Х. Дуран Гуардено
Том 14. Истина в пределе. Анализ бесконечно малых

Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.