Том 27. Поэзия чисел. Прекрасное и математика - [10]
«Портрет четы Арнольфини» — картина Яна ван Эйка, созданная в 1434 году, хранится в Лондонской национальной галерее.
«Афинская школа» — фреска, созданная Рафаэлем Санти в 1510–1511 годах для Ватиканского дворца.
Слева — «Менины», картина Веласкеса, написанная в 1656 году, сейчас хранится в музее Прадо. Справа — фрагмент картины «Сеятель», созданной Винсентом ван Гогом в 1888 году, в настоящее время хранится в частной коллекции.
Музыка
Похожие рассуждения будут справедливы для музыки и органов слуха. Здесь нужно рассмотреть последовательность музыкальных аккордов во времени, их кинетический характер. Философ Монро Бирдсли писал: «Музыка есть искусство, которое течет со временем: она колеблется, подпрыгивает, колышется, становится неспокойной, поднимается, запинается и беспрерывно движется». Эта временная упорядоченность музыки, которая отсутствует в живописи, также крайне важна в математике. Теорема, подобно симфонии, начинается, продолжается и заканчивается, и порядок расположения ее составных частей имеет огромное значение.
Последовательный характер музыки очень важен для ее восприятия: чтобы оценить эстетику мелодии, нужно обладать определенной звуковой памятью. При этом звуковая память человека не особенно развита по сравнению, например, с визуальной.
Как-то раз я услышал такую фразу: человек, слушающий квартет Брамса, подобен рыбе, смотрящей «Психоз» Хичкока. Наша кратковременная звуковая память не способна фиксировать сложные последовательности звуков, и еще меньше она подходит для распознавания подобных последовательностей с легким изменением ритма каждые несколько минут. Именно это чувствует рыба, которая смотрит на киноэкран: увидев эпизод фильма, уже спустя несколько минут или даже секунд она забывает его и не способна узнать персонажа, который на мгновение исчез с экрана. Мне кажется, что способность людей запоминать сложные мелодии также проявляется в распознавании абстрактных элементов грамотных математических рассуждений. Как следствие, ограниченные способности распознавания подобных шаблонов, которые столь часто встречаются в математике, всерьез мешают нам оценить их красоту.
Схожесть музыки и математики легла в основу множества эссе, которые уже написаны и наверняка появятся в будущем. Не будем забывать слова великого Лейбница: «Музыка есть тайное упражнение в арифметике ведущей счет, но не сознающей этого души». Далее мы ограничимся тем, что подчеркнем важное различие между музыкой и математикой. Когда мы наслаждаемся музыкой, органы слуха последовательно и автоматически передают мозгу мелодию, ритмические элементы, ее ритм, композицию и так далее. Располагая этой информацией, мозг определяет, можно ли считать элементы мелодии гармоничными, а музыку — красивой. Но какое из наших чувств автоматически передает мозгу последовательность математических идей, которые содержит великая теорема?
«Виолончелист». Снимок выполнен одним из пионеров фотографии Антоном Джулио Брагалья в 1913 году.
Пример из гастрономии
Все эти рассуждения справедливы и в более сложных ситуациях, когда участвуют несколько чувств, например в гастрономии, поэтому процесс сенсорного восприятия более сложен, но столь же эффективен. Так, в дегустации вина участвуют все чувства, начиная со слуха, который передает в мозг звук вина, льющегося в бокал (по этому звуку можно оценить содержание в вине глицерина и алкоголя); за ним следует зрение, которое передает тональность и насыщенность цвета; обоняние, транслирующее мозгу множество информации о запахах, в формировании которых участвуют различные сорта винограда, особенности изготовления вина, условия и продолжительность выдержки; букет, позволяющий оценить соотношение четырех основных вкусов; и даже осязание, которое передает внутреннюю гармонию различных компонентов вина. Все органы чувств сообщают мозгу информацию об органолептических свойствах вина, позволяющую оценить его с эстетической точки зрения.
В последнем примере нужно учесть некоторые минимальные начальные условия, без которых оценить эстетические свойства вина невозможно. Речь идет об отсутствии определенных религиозных и моральных ограничений — пусть и в меньшей степени, это соображение применимо для живописи и скульптуры: представьте себе знаменитый тайный зал дворца Габсбургов, где хранились изображения обнаженной натуры, или цензуру в нацистской Германии, запрещавшую полотна импрессионистов, экспрессионистов, авангардистов и других представителей «дегенеративного искусства». Необходимо обладать определенной культурой и развитой способностью оценивать и различать вкусы и запахи, а также обонятельной памятью, которая позволяет распознавать запах дегустируемого вина и сравнивать его с винами, попробованными ранее. И разумеется, важное условие — отсутствие атрофии органов чувств, возникающей при встрече с некоторыми определенными вкусами и запахами. Совсем нетрудно увидеть, что подобные начальные условия мешают нам наслаждаться математическими рассуждениями: это и антипатия, которую добрая часть населения испытывает к математике, и атрофия чувств, которую может вызвать подобная нелюбовь. Не будем говорить о причинах такого отношения к математике. Предлагаем читателю поразмыслить: рекламной индустрии удалось совершить чудо и превратить черный и сладкий освежающий напиток во «вкус жизни», просто повторив одну и ту же фразу несколько миллионов раз; то же самое, но со знаком «минус», произошло с математикой.
Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.